【題目】如圖,已知拋物線y=x2+x﹣6與x軸兩個交點分別是A、B(點A在點B的左側(cè)).
(1)求A、B的坐標(biāo);
(2)利用函數(shù)圖象,寫出y<0時,x的取值范圍.
【答案】(1)A(-3,0),B(2,0);(2)或.
【解析】
(1)令y=0代入y=x2+x-6即可求出x的值,此時x的值分別是A、B兩點的橫坐標(biāo).
(2)根據(jù)圖象可知:y<0是指x軸下方的圖象,根據(jù)A、B兩點的坐標(biāo)即可求出x的范圍.
(1)令y=0,得:x2+x6=0,
解得:x=3或x=2,
∵點A在點B的左側(cè),
∴點A.B的坐標(biāo)分別為(3,0)、(2,0);
(2)由函數(shù)圖象知,當(dāng)3<x<2時,函數(shù)圖象位于x軸下方,即y<0,
∴y<0時,3<x<2.
∵當(dāng)y<0時,x的取值范圍為:3<x<2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓0的直徑AB垂直于弦CD于點E,CG是圓O的切線交AB的延長線于點G,連接CO并延長交AD于點F,且CFAD.
(1)試問:CG//AD嗎?說明理由:
(2)證明:點E為OB的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB內(nèi)接于圓O,AB為直徑,CD⊥AB與點D,E為圓外一點,EO⊥AB,與BC交于點G,與圓O交于點F,連接EC,且EG=EC.
(1)求證:EC是圓O的切線;
(2)當(dāng)∠ABC=22.5°時,連接CF.
①求證:AC=CF;
②若AD=1,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.
(1)若售價上漲m元,每月能售出 個排球(用m的代數(shù)式表示).
(2)為迎接“雙十一”,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進(jìn)行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象與x軸的交點的橫坐標(biāo)分別為﹣1、3,則下列結(jié)論:①abc<0;②2a+b=0;③3a+2c>0;④對于任意x均有ax2﹣a+bx﹣b≥0,正確個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運(yùn)動,點P在AC,CB,BA邊上運(yùn)動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設(shè)運(yùn)動的時間為t秒,當(dāng)點P第一次回到點A時,點P和直線l同時停止運(yùn)動.
(1)當(dāng)t=5秒時,點P走過的路徑長為_________;當(dāng)t=_________秒時,點P與點E重合;
(2)當(dāng)點P在AC邊上運(yùn)動時,連結(jié)PE,并過點E作AB的垂線,垂足為H. 若以C、P、E為頂點的三角形與△EFH相似,試求線段EH的值;
(3)當(dāng)點P在折線AC-CB-BA上運(yùn)動時,作點P關(guān)于直線EF的對稱點Q.在運(yùn)動過程中,若形成的四邊形PEQF為菱形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0;②a-b+c<0;③2a=b;④4a+2b+c>0;⑤若點(-2,y1)和(-,y2)在該圖象上,則y1>y2. 其中正確的結(jié)論個數(shù)是 ( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,把矩形OCBA繞點C順時針旋轉(zhuǎn)α角,得到矩形FCDE,設(shè)FC與AB交于點H,且A(0,4),C(6,0).
(1)當(dāng)α=45°時,求H點的坐標(biāo).
(2)當(dāng)α=60°時,ΔCBD是什么特殊的三角形?說明理由.
(3)當(dāng)AH=HC時,求直線HC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點A1,A2,A3,…和點C1,C2,C3,…分別在直線 (k>0)和x軸上,已知點B1(1,1),B2(3,2),則Bn的坐標(biāo)是__________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com