【題目】為了保證人們上下樓的安全,樓梯踏步的寬度和高度都要加以限制.中小學(xué)樓梯寬度的范圍是260mm~300mm含(300mm),高度的范圍是120mm~150mm(含150mm).如圖是某中學(xué)的樓梯扶手的截面示意圖,測量結(jié)果如下:AB,CD分別垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,試問該中學(xué)樓梯踏步的寬度和高度是否符合規(guī)定.(結(jié)果精確到1mm,參考數(shù)據(jù):sin65°≈0.906,cos65°≈0.423)
【答案】該中學(xué)樓梯踏步的寬度和高度都符合規(guī)定.
【解析】
根據(jù)題意,作出合適的輔助線,然后根據(jù)銳角三角函數(shù)即可求得BM和DM的長,然后計算出該中學(xué)樓梯踏步的寬度和高度,再與規(guī)定的比較大小,即可解答本題.
解:連接BD,作DM⊥AB于點M,
∵AB=CD,AB,CD分別垂直平分踏步EF,GH,
∴AB∥CD,AB=CD,
∴四邊形ABCD是平行四邊形,
∴∠C=∠ABD,AC=BD,
∵∠C=65°,AC=900,
∴∠ABD=65°,BD=900,
∴BM=BDcos65°=900×0.423≈381,DM=BDsin65°=900×0.906≈815,
∵381÷3=127,120<127<150,
∴該中學(xué)樓梯踏步的高度符合規(guī)定,
∵815÷3≈272,260<272<300,
∴該中學(xué)樓梯踏步的寬度符合規(guī)定,
由上可得,該中學(xué)樓梯踏步的寬度和高度都符合規(guī)定.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅樹林學(xué)校在七年級新生中舉行了全員參加的“防溺水”安全知識競賽,試卷題目共10題,每題10分.現(xiàn)分別從三個班中各隨機取10名同學(xué)的成績(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
分數(shù) 人數(shù) 班級 | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根據(jù)以上信息回答下列問題:
(1)請直接寫出表格中的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由;
(3)為了讓學(xué)生重視安全知識的學(xué)習(xí),學(xué)校將給競賽成績滿分的同學(xué)頒發(fā)獎狀,該校七年級新生共570人,試估計需要準備多少張獎狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,以點M(0,)為圓心,以長為半徑作M交x軸于A.B兩點,交y軸于C.D兩點,連接AM并延長交M于P點,連接PC交x軸于E.
(1)求點C.P的坐標;
(2)求證:BE=2OE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點C在x軸的負半軸上,將平行四邊形 ABCO繞點A逆時針旋轉(zhuǎn)得到平行四邊形ADEF,AD經(jīng)過點O,點F恰好落在x軸的正半軸上.若點D在反比例函數(shù)y=(x<0)的圖象上,則k的值為( 。
A.4B.12C.8D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠B+∠D=180°,對角線AC平分∠BAD
(1)如圖1,若∠DAB=120°,且∠B=90°,易證AD+BA=AC
(2)如圖2,若將(1)中的條件“∠B=90°”去掉,(1)中的結(jié)論是否成立?請說明理由.
(3)如圖3,若∠DAB=90°,探究邊AD、AB與對角線AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+3與坐標軸分別交于點A,B(﹣3,0),C(1,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線解析式;
(2)當(dāng)點P運動到什么位置時,△PAB的面積最大?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P作PE∥x軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜種植基地為提高蔬菜產(chǎn)量,計劃對甲、乙兩種型號蔬菜大棚進行改造,根據(jù)預(yù)算,改造2個甲種型號大棚比1個乙種型號大棚多需資金6萬元,改造1個甲種型號大棚和2個乙種型號大棚共需資金48萬元.
(1)改造1個甲種型號和1個乙種型號大棚所需資金分別是多少萬元?
(2)已知改造1個甲種型號大棚的時間是5天,改造1個乙種型號大概的時間是3天,該基地計劃改造甲、乙兩種蔬菜大棚共8個,改造資金最多能投入128萬元,要求改造時間不超過35天,請問有幾種改造方案?哪種方案基地投入資金最少,最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與雙曲線相交于A(-1,2)和B(2,b)兩點,與y軸交于點C,與x軸交于點D.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出不等式的解集;
(3)經(jīng)研究發(fā)現(xiàn):在y軸負半軸上存在若干個點P,使得為等腰三角形。請直接寫出P點所有可能的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com