【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是 ,證明你的結(jié)論.
(2)當(dāng)四邊形ABCD的對角線滿足 條件時,四邊形EFGH是矩形;
(3)你學(xué)過的哪種特殊四邊形的中點四邊形是矩形? .
【答案】(1)平行四邊形,證明見解析.
(2)四邊形ABCD的對角線滿足互相垂直,證明見解析,
(3)菱形,證明見解析.
【解析】
(1)連接BD,根據(jù)三角形的中位線定理得到EH∥BD,EH=BD,FG∥BD,FG═BD,推出,EH∥FG,EH=FG,根據(jù)一組對邊平行且相等的四邊形是平行四邊形得出四邊形EFGH是平行四邊形;
(2)根據(jù)有一個角是直角的平行四邊形是矩形,可知當(dāng)四邊形ABCD的對角線滿足AC⊥BD的條件時,四邊形EFGH是矩形;
(3)菱形的中點四邊形是矩形.根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得四邊形EFGH是平行四邊形,再根據(jù)矩形的每一個角都是直角,然后根據(jù)平行線的性質(zhì),再根據(jù)垂直定義解答;
解:(1)四邊形EFGH的形狀是平行四邊形.理由如下:
如圖,連結(jié)BD. ∵E、H分別是AB、AD中點,
∴EH∥BD,EH= BD,
同理FG∥BD,FG=BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形;
故答案為:平行四邊形.
(2)當(dāng)四邊形ABCD的對角線滿足互相垂直的條件時,四邊形EFGH是矩形.
理由如下: 如圖,連結(jié)AC、BD.
∵E、F、G、H分別為四邊形ABCD四條邊上的中點,
∴EH∥BD,HG∥AC,
∵AC⊥BD, ∴EH⊥HG,
又∵四邊形EFGH是平行四邊形,
∴平行四邊形EFGH是矩形;
故答案為:對角線互相垂直.
(3)菱形的中點四邊形是矩形.
理由如下: 如圖,連結(jié)AC、BD. ∵E、F、G、H分別為四邊形ABCD四條邊上的中點, ∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形.
∵四邊形ABCD是菱形,
∴AC⊥BD,
∵EH∥BD,HG∥AC,
∴EH⊥HG,
∴平行四邊形EFGH是矩形;
故答案為:菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知abc 0,而且 ,那么直線y=px+p一定通過( )
A.第一、二象限
B.第二、三象限
C.第三、四象限
D.第一、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景點的門票價格規(guī)定如下表:
我校初二(1),(2)兩個班共104人準(zhǔn)備利用假期去游覽該景點,其中(1)班人數(shù)較少,不到50人,(2)班人數(shù)較多,有50多人,經(jīng)估算,如果兩班都以班為單位分別購票,則一共應(yīng)付1240元,問兩班各有多少名學(xué)生? 你認為還有沒有好的方法去節(jié)省門票的費用?若有,請按照你的方法計算一下能省多少錢?(
購票人數(shù) | 1-50人 | 51-100人 | 100人以上 |
每人門票價 | 13元 | 11元 | 9元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,OD⊥BC于點D,過點C作⊙O的切線,交OD的延長線于點E,連接BE.
(1)求證:BE與⊙O相切;
(2)設(shè)OE交⊙O于點F,若DF=1,BC=2 ,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,E是CB延長線上一個動點,F、G分別為AE、BC的中點,FG與ED相交于點H
(1) 求證:HE=HG
(2) 如圖2,當(dāng)BE=AB時,過點A作AP⊥DE于點P連接BP,求的值
(3) 在(2)的條件下,若AD=2,∠ADE=30°,則BP的長為______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上
(1)畫出△ABC向右平移4格, 再向上平移1格后的△A1B1C1;
(2)圖中BC與B1C1的關(guān)系是 ;
(3)圖中△ABC的面積是
(4)請在AB上找一點D,使得線段CD平分△ABC的面積,在圖上作出線段CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點F.點E在⊙O外,做直線AE,且∠EAC=∠D
(1)求證:直線AE是⊙O的切線.
(2)若∠BAC=30°,BC=4,cos∠BAD= ,CF= ,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為改善辦學(xué)條件,計劃采購A、B兩種型號的空調(diào),已知采購3臺A型空調(diào)和2臺B型空調(diào),需費用39000元;4臺A型空調(diào)比5臺B型空調(diào)的費用多6000元.
(1)求A型空調(diào)和B型空調(diào)每臺各需多少元;
(2)若學(xué)校計劃采購A、B兩種型號空調(diào)共30臺,且A型空調(diào)的臺數(shù)不少于B型空調(diào)的一半,兩種型號空調(diào)的采購總費用不超過217000元,該校共有哪幾種采購方案?
(3)在(2)的條件下,采用哪一種采購方案可使總費用最低,最低費用是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com