【題目】甲、乙兩人沿同一路線登山,圖中線段OC、折線OAB分別是甲、乙兩人登山的路程y(米)與登山時間x(分)之間的函數(shù)圖象.請根據(jù)圖象所提供的信息,解答如下問題:

(1)求甲登山的路程與登山時間之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)求乙出發(fā)后多長時間追上甲?此時乙所走的路程是多少米?

【答案】(1)y=20x(0≤x≤30);(2)乙出發(fā)后10分鐘追上甲,此時乙所走的路程是200米.

【解析】

試題(1)設甲登山的路程y與登山時間x之間的函數(shù)解析式為y=kx,根據(jù)圖象得到點C的坐標,然后利用待定系數(shù)法求一次函數(shù)解析式解答;

2)根據(jù)圖形寫出點A、B的坐標,再利用待定系數(shù)法求出線段AB的解析式,再與OC的解析式聯(lián)立求解得到交點的坐標,即為相遇時的點.

試題解析:(1)設甲登山的路程y與登山時間x之間的函數(shù)解析式為y=kx,

C30600)在函數(shù)y=kx的圖象上,

∴600=30k,

解得k=20

∴y=20x0≤x≤30);

2)設乙在AB段登山的路程y與登山時間x之間的函數(shù)解析式為y=ax+b8≤x≤20),

由圖形可知,點A8,120),B20,600

所以,,解得,所以,y=40x﹣200,

設點DOCAB的交點,聯(lián)立,解得,

故乙出發(fā)后10分鐘追上甲,此時乙所走的路程是200米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OC在∠BOD內.

1)如果∠AOC和∠BOD都是直角.

①若∠BOC=60°,則∠AOD的度數(shù)是   ;

②猜想∠BOC與∠AOD的數(shù)量關系,并說明理由;

2)如果∠AOC=BOD=x°,AOD=y°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求經(jīng)過點C的反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

小明遇到一個問題:AD是△ABC的中線, MBC邊上任意一點(不與點D重合),過點M作一直線,使其等分△ABC的面積.

他的做法是:如圖1,連結AM,過點DDN//AMAC于點N,作直線MN,直線MN即為所求直線.

請你參考小明的做法,解決下列問題:

(1)如圖2, AE等分四邊形ABCD的面積,MCD邊上一點,過M直線MN,使其等分四邊形ABCD的面積(要求:在圖2中畫出直線MN,并保留作圖痕跡);

(2)如圖3,求作過點A的直線AE,使其等分四邊形ABCD的面積(要求:在圖3中畫出直線AE,并保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某社區(qū)居民的用電情況,隨機對該社區(qū)10戶居民進行調查,下表是這10戶居民2016年4月份用電量的調查結果:

居民(戶)

1

2

3

4

月用電量(度/戶)

30

42

50

51

那么關于這10戶居民月用電量的說法錯誤的是(
A.中位數(shù)是50
B.眾數(shù)是51
C.平均數(shù)是46.8
D.方差是42

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式Ax2+3xyxB=2x2xy+4y-1

(1)xy=-2時,求2AB的值;

(2)2AB的值與y的取值無關,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了了解本校學生的上學方式,在全校范圍內隨機抽查了部分學生,將收集到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖(如圖所示),請根據(jù)圖中提供的信息,解答下列問題.

學生上學方式扇形統(tǒng)計圖

學生上學方式條形統(tǒng)計圖

(1)m等于百分之多少,這次共抽取幾名學生進行調查,并補全條形統(tǒng)計圖.

(2)在這次抽樣調查中,采用哪種上學方式的人數(shù)最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學騎自行車去郊外春游,騎行1小時后,自行車出現(xiàn)故障,維修好后繼續(xù)騎行,下圖表示他離家的距離y(千米)與所用的時間x()之間關系的圖象

(1)根據(jù)圖象回答:小明到達離家最遠的地方用了多長時間?此時離家多遠?

(2)求小明出發(fā)2.5小時后離家多遠;

(3)求小明出發(fā)多長時間離家12千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點A(-2,0),B(4,0),現(xiàn)同時將點A、B分別向上平移4個單位,再向右平移2個單位,得到點A、B的對應點C、D,連接AC,CD、BD.

(1)直接寫出點C、D的坐標,求四邊形ABDC的面積;

(2)動點P從點C出發(fā),以每秒1個單位的速度,沿射線CO運動.設點P運動時間為t秒.連結PA,設三角形AOP的面積為S ,求St之間的關系式;

(3)如圖,在(2)的條件下,在線段BO上取一點E,使2BE=OB,連接PB、CE相交于點F,當三角形AOP的面積是四邊形ABDC時,求點F的坐標.

查看答案和解析>>

同步練習冊答案