【題目】如圖,拋物線與坐標(biāo)軸的交點(diǎn)為,,,拋物線的頂點(diǎn)為.
(1)求拋物線的解析式.
(2)若為第二象限內(nèi)一點(diǎn),且四邊形為平行四邊形,求直線的解析式.
(3)為拋物線上一動點(diǎn),當(dāng)的面積是的面積的3倍時,求點(diǎn)的坐標(biāo).
【答案】(1);(2);(3)點(diǎn)的坐標(biāo)為或.
【解析】
(1)本題考查二次函數(shù)解析式的求法,可利用待定系數(shù)法,將點(diǎn)帶入求解;
(2)本題考查二次函數(shù)平行四邊形存在性問題,可根據(jù)題干信息結(jié)合平行四邊形性質(zhì)確定動點(diǎn)位置,進(jìn)一步利用待定系數(shù)法求解一次函數(shù)解析式;
(3)本題考查二次函數(shù)與三角形面積問題,可先根據(jù)題干面積關(guān)系假設(shè)動點(diǎn)坐標(biāo),繼而帶入二次函數(shù),列方程求解.
(1)∵拋物線與坐標(biāo)軸的交點(diǎn)為,,,
∴,解得
∴拋物線的解析式為.
(2)如圖,過點(diǎn)作軸于點(diǎn),
則由平行四邊形的對稱性可知,.
∵,∴,∴點(diǎn)的坐標(biāo)為.
∵點(diǎn)的坐標(biāo)為,
∴設(shè)直線的解析式為
將點(diǎn)代入,得,解得,
∴直線的解析式為.
(3)∵,
∴拋物線的頂點(diǎn)為.
∵的面積是的面積的3倍,
∴設(shè)點(diǎn)為.
將點(diǎn)代入拋物線的解析式中,
得,解得或,
故點(diǎn)的坐標(biāo)為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點(diǎn),EG⊥AF,FH⊥CE,垂足分別為G,H,設(shè)AG=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關(guān)系式是( 。
A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)是,為拋物線上的一個動點(diǎn),過點(diǎn)作軸于點(diǎn),交直線于點(diǎn),拋物線的對稱軸是直線.
(1)求拋物線的函數(shù)表達(dá)式和直線的解析式;
(2)若點(diǎn)在第二象限內(nèi),且,求的面積;
(3)在(2)的條件下,若為直線上一點(diǎn),是否存在點(diǎn),使為等腰三角形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點(diǎn),與軸相交于點(diǎn),連接、.
(1)與之間的關(guān)系式為: ;
(2)判斷線段和之間的數(shù)量關(guān)系,并說明理由;
(3)設(shè)點(diǎn)是拋物線上、之間的動點(diǎn),連接,,當(dāng)時:
①若,求點(diǎn)的坐標(biāo);
②若,且的最大值為,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從兩地同時出發(fā),沿同一條公路相向行駛,相遇后,甲車?yán)^續(xù)以原速行駛到地,乙車立即以原速原路返回到地,甲、乙兩車距地的路程與各自行駛的時間之間的關(guān)系如圖所示.
⑴________,________;
⑵求乙車距地的路程關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;
⑶當(dāng)甲車到達(dá)地時,求乙車距地的路程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015資陽)如圖,直線與軸、軸分別相交于兩點(diǎn),與雙曲線相交于點(diǎn)軸于點(diǎn),且,點(diǎn)的坐標(biāo)為.
(1)求雙曲線的解析式;
(2)若點(diǎn)為雙曲線上點(diǎn)右側(cè)的一點(diǎn),且軸于,當(dāng)以點(diǎn)為頂點(diǎn)的三角形與相似時,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC是圓O的內(nèi)接三角形,過點(diǎn)O作OD⊥AB與點(diǎn)D,連接OA,點(diǎn)E是AC的中點(diǎn),延長EO交BC于點(diǎn)F.
(1)求證:△CEF∽△ODA.
(2)若,△ABC是不是等腰三角形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于及一個矩形給出如下定義:如果上存在到此矩形四份頂點(diǎn)距離都相等的點(diǎn),那么稱是該矩形的“等距圓”,如圖,平面直角坐標(biāo)系中,矩形的頂點(diǎn)坐標(biāo)為,頂點(diǎn)在軸上,,且的半徑為.
(1)在,,中可以成為矩形的“等距圓”的圓心的是__________.
(2)如果點(diǎn)在直線上,且是矩形的“等距圓”,那么點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線的對稱軸與x軸交于點(diǎn)A,將點(diǎn)A向左平移b個單位,再向上平移個單位,得到點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo)(用含b的式子表示);
(2)當(dāng)拋物線經(jīng)過點(diǎn),且時,求拋物線的表達(dá)式;
(3)若拋物線與線段AB恰有一個公共點(diǎn),結(jié)合圖象,直接寫出b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com