14.已知:如圖,AM為⊙O的切線,A為切點(diǎn),過⊙O上一點(diǎn)B作BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.
(1)求∠AOB的度數(shù);
(2)當(dāng)⊙O的半徑為2cm,求CD的長.

分析 (1)由AM為圓O的切線,利用切線的性質(zhì)得到OA與AM垂直,再由BD與AM垂直,得到OA與BD平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,再由OC為角平分線得到一對角相等,以及OB=OC,利用等邊對等角得到一對角相等,等量代換得到∠BOC=∠OBC=∠OCB=60°,即可得出答案;
(2)過點(diǎn)O作OE⊥BD于點(diǎn)E,進(jìn)而得出四邊形OADE是矩形,得出DC的長即可.

解答 解:(1)∵AM為圓O的切線,
∴OA⊥AM,
∵BD⊥AM,
∴∠OAD=∠BDM=90°,
∴OA∥BD,
∴∠AOC=∠OCB,
∵OB=OC,
∴∠OBC=∠OCB,
∵OC平分∠AOB,
∴∠AOC=∠BOC,
∴∠BOC=∠OCB=∠OBC=60°,
∴∠AOB=120°;

(2)過點(diǎn)O作OE⊥BD于點(diǎn)E,
∵∠BOC=∠OCB=∠OBC=60°,
∴△OBC是等邊三角形,
∴BE=EC=1,
∵∠OED=∠EDA=∠OAD=90°,
∴四邊形OADE是矩形,
∴DE=OA=2,
∴EC=DC=1.

點(diǎn)評 此題考查了切線的性質(zhì),平行線的判定與性質(zhì)以及等腰三角形的性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.下列調(diào)查中,適合采用全面調(diào)查的是( 。
A.了解我國各地中學(xué)多媒體的使用情況
B.測試我國某新型導(dǎo)彈的威力
C.對某商場防火安全的調(diào)查
D.對今年全國各地酒店“杜絕浪費(fèi),提倡節(jié)約”的調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)分別為A(-1,-1),B(-3,3),C(-4,1)
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo);
(2)畫出△ABC繞點(diǎn)A按逆時針旋轉(zhuǎn)90°后的△AB2C2,并寫出點(diǎn)C的對應(yīng)點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.我市為全面推進(jìn)“十個全覆蓋”工作,綠化提質(zhì)改造工程如火如荼地進(jìn)行,某施工隊(duì)計劃購買甲、乙兩種樹苗共600棵對某標(biāo)段道路進(jìn)行綠化改造,已知甲種樹苗每棵100元,乙種樹苗每棵200元.
(1)若購買兩種樹苗的總金額為70000元,求需購買甲、乙兩種樹苗各多少棵?
(2)若購買甲種樹苗的金額不少于購買乙種樹苗的金額,至少應(yīng)購買甲種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.某幾何體的三視圖如圖所示,則這個幾何體的名稱是圓柱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2017屆廣東省佛山市順德區(qū)九年級第一次模擬考試數(shù)學(xué)試卷(解析版) 題型:單選題

如圖,在Rt△ABC中,斜邊AB的長為m,∠A=35°,則直角邊BC的長是( 。

A. msin35° B. mcos35° C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2017屆湖北省九年級三月月考數(shù)學(xué)試卷(解析版) 題型:判斷題

如圖,拋物線 軸于點(diǎn) 和點(diǎn) ,交 軸于點(diǎn)

(1)求拋物線的函數(shù)表達(dá)式;

(2)若點(diǎn) 在拋物線上,且 ,求點(diǎn) 的坐標(biāo);

(3)如圖 b,設(shè)點(diǎn) 是線段 上的一動點(diǎn),作 軸,交拋物線于點(diǎn) ,求線段 長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2017屆湖北省九年級三月月考數(shù)學(xué)試卷(解析版) 題型:單選題

如圖, 的弦, 的切線, 為切點(diǎn), 經(jīng)過圓心,若 ,則 的大小等于( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.已知菱形的一條對角線長為6cm,面積為24cm2,則菱形的邊長為5cm.

查看答案和解析>>

同步練習(xí)冊答案