【題目】我們定義:如果圓的兩條弦互相垂直,那么這兩條弦互為“十字弦”,也把其中的一條弦叫做另一條弦的“十字弦”.如:如圖,已知的兩條弦,則、互為“十字弦”,是的“十字弦”,也是的“十字弦”.
(1)若的半徑為5,一條弦,則弦的“十字弦”的最大值為______,最小值為______.
(2)如圖1,若的弦恰好是的直徑,弦與相交于,連接,若,,,求證:、互為“十字弦”;
(3)如圖2,若的半徑為5,一條弦,弦是的“十字弦”,連接,若,求弦的長.
【答案】(1)10,6;(2)見解析;(3).
【解析】
(1)根據“十字弦”定義可得弦的“十字弦”為直徑時最大,當CD過A點或B點時最小;
(2)根據線段長度得出對應邊成比例且有夾角相等,證明△ACH∽△DCA,由其性質得出對應角相等,結合90°的圓周角證出AH⊥CD,根據“十字弦”定義可得;
(3)過O作OE⊥AB于點E,作OF⊥CD于點F,利用垂徑定理得出OE=3,由正切函數得出AH=DH,設DH=x,在Rt△ODF中,利用線段和差將邊長用x表示,根據勾股定理列方程求解.
解:(1)當CD為直徑時,CD最大,此時CD=10,
∴弦的“十字弦”的最大值為10;
當CD過A點時,CD長最小,即AM的長度,過O點作ON⊥AM,垂足為N,作OG⊥AB,垂足為G,則四邊形AGON為矩形,
∴AN=OG,
∵OG⊥AB,AB=8,
∴AG=4,
∵OA=5,
∴由勾股定理得OG=3,
∴AN=3,
∵ON⊥AM,
∴AM=6,
即弦的“十字弦”的最小值是6.
(2)證明:如圖,連接AD,
∵,,,
∴ ,
∵∠C=∠C,
∴△ACH∽△DCA,
∴∠CAH=∠D,
∵CD是直徑,
∴∠CAD=90°,
∴∠C+∠D=90°,
∴∠C+∠CAH=90°,
∴∠AHC=90°,
∴AH⊥CD,
∴、互為“十字弦”.
(3)如圖,過O作OE⊥AB于點E,作OF⊥CD于點F,連接OA,OD,則四邊形OEHF是矩形,∴OE=FH,OF=EH,
∴AE=4,
∴由勾股定理得OE=3,
∴FH=3,
∵tan∠ADH=,
∴tan60°= ,
設DH=,則AH=x,
∴FD=3+x,OF=HE=4 -x,
在Rt△ODF中,由勾股定理得,OD2=OF2+FD2,
∴(3+x)2+(4 -x)2=52,
解得,x= ,
∴FD=,
∵OF⊥CD,
∴CD=2DF=
即CD=
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+4x+c(a≠0)與反比例函數y=的圖象相交于點B,且點B的橫坐標為5,拋物線與y軸交于點C(0,6),A是拋物線的頂點,P和Q分別是x軸和y軸上的兩個動點,則AQ+QP+PB的最小值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,點P由點A出發(fā)沿AB方向向終點B勻速移動,速度為1cm/s,點Q由點B出發(fā)沿BC方向向終點C勻速移動,速度為2cm/s.如果動點P,Q同時從A,B出發(fā),當P或Q到達終點時運動停止.幾秒后,以Q,B,P為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),在平面直角坐標系中,矩形ABCO,B點坐標為(4,3),拋物線y=x2+bx+c經過矩形ABCO的頂點B、C,D為BC的中點,直線AD與y軸交于E點,與拋物線y=x2+bx+c交于第四象限的F點.
(1)求該拋物線解析式與F點坐標;
(2)如圖,動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;
同時,動點M從點A出發(fā),沿線段AE以每秒個單位長度的速度向終點E運動.過
點P作PH⊥OA,垂足為H,連接MP,MH.設點P的運動時間為t秒.
①問EP+PH+HF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,求出此時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了豐富學生課余生活,計劃開設以下社團:A.足球、B.機器人、C.航模、D.繪畫,學校要求每人只能參加一個社團小麗和小亮準備隨機報名一個項目.
(1)求小亮選擇“機器人”社團的概率為______;
(2)請用樹狀圖或列表法求兩人至少有一人參加“航模”社團的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個盒中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸取一個小球然后放回,再隨機摸出一個小球.
(Ⅰ)請用列表法(或畫樹狀圖法)列出所有可能的結果;
(Ⅱ)求兩次取出的小球標號相同的概率;
(Ⅲ)求兩次取出的小球標號的和大于6的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,園林小組的同學用一段長16米的籬笆圍成一個一邊靠墻的矩形菜園ABCD,墻的長度為9米,設AB的長為x米,BC的長為y米.
(1)①寫出y與x的函數關系是: ;
②自變量x的取值范圍是 ;
(2)園林小組的同學計劃使矩形菜園的面積為30平方米,試求此時邊AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,⊙O的半徑為r,若點P′在射線OP上,滿足OP′×OP=r2,則稱點P′是點P關于⊙O的“反演點”,如圖2,⊙O的半徑為4,點B在⊙O上,∠BOA=60°,OA=8,若點A'是點A關于⊙O的反演點,求A'B的長為( 。
A.B.2C.2D.4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com