【題目】如圖,已知正方形的邊長(zhǎng)為4,是邊上的一個(gè)動(dòng)點(diǎn),連接,過(guò)點(diǎn)的垂線交于點(diǎn),以為邊作正方形,頂點(diǎn)在線段上,對(duì)角線,相交于點(diǎn).

1)若,則 ;

2)①求證:點(diǎn)一定在的外接圓上;

②當(dāng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)也隨之運(yùn)動(dòng),求點(diǎn)經(jīng)過(guò)的路徑長(zhǎng);

3)在點(diǎn)從點(diǎn)到點(diǎn)的運(yùn)動(dòng)過(guò)程中,的外接圓的圓心也隨之運(yùn)動(dòng),求該圓心到邊的距離的最大值.

【答案】(1);(2)①詳見(jiàn)解析;②2;(3)

【解析】

1)由正方形的性質(zhì)得出∠C=B=EPG=90°,PFEGCD=BC=4,∠OEP=45°,由角的互余關(guān)系證出∠BEP=DPC,得出CDP∽△BPE,得出對(duì)應(yīng)邊成比例即可求出BE的長(zhǎng);
2)①B、PO、E四點(diǎn)共圓,即可得出結(jié)論;
②連接BO、BD,由勾股定理求出BD=4,由圓周角定理得出∠OBP=OEP=45°,周長(zhǎng)點(diǎn)OBD上,當(dāng)P運(yùn)動(dòng)到點(diǎn)C時(shí),OBD的中點(diǎn),即可得出答案;
3)設(shè)的外接圓的圓心為M,作MNCBN,由三角形中位線定理得出MN=BE,設(shè)BP=x,則CP=4-x,由相似三角形的對(duì)應(yīng)邊成比例求出BE=x-x2=-x-22+1,由二次函數(shù)的最大值求出BE的最大值為1,得出MN的最大值=即可.

解:(1)∵四邊形ABCD、四邊形PEFG是正方形,
∴∠C=B=EPG=90°PFEG,CD=BC=4,∠OEP=45°,
∴∠BEP+BPE=90°,∠DPC+BPE=90°,
∴∠BEP=DPC
CDP∽△BPE;

,即

BE=

2)①證明:如圖,
PE的中點(diǎn)Q,連接BQ,OQ,

∵∠POE=90°
OQ=PE,
∵△BPE是直角三角形,
∴點(diǎn)QRtBPE外接圓的圓心,
BQ=PE
OQ=BQ,
∴點(diǎn)O一定在APE的外接圓上;(到圓心的距離等于半徑的點(diǎn)必在此圓上)
②解:連接OB、BD,如圖所示:

∵四邊形ABCD是正方形,
∴∠ABC=90°,∠DBC=45°,
BD==4
B、P、O、E四點(diǎn)共圓,
∴∠OBP=OEP=45°,
∴點(diǎn)OBD上,
當(dāng)P運(yùn)動(dòng)到點(diǎn)C時(shí),OBD的中點(diǎn),OB=BD=2
即點(diǎn)O經(jīng)過(guò)的路徑長(zhǎng)為2;
3)解:設(shè)BPE的外接圓的圓心為M,作MNBCN,如圖:

MNBE
ME=MP,
BN=PN
MN=BE
設(shè)BP=x,則PC=4-x,
由(1)得:CDP∽△BPE,
,即
解得:BE=x-x2=-x-22+1

x=2時(shí),BE的最大值為1,此時(shí)MN的值最大=,
APE的圓心到BC邊的距離的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

(1)如圖1,等腰直角四邊形ABCD,AB=BC,ABC=90°

若AB=CD=1,ABCD,求對(duì)角線BD的長(zhǎng).

若ACBD,求證:AD=CD

(2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對(duì)角線BD上一點(diǎn),且BP=2PD,過(guò)點(diǎn)P作直線分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過(guò)點(diǎn),與軸交于另一點(diǎn),且對(duì)稱(chēng)軸是直線

1)求該二次函數(shù)的解析式;

2)若上的一點(diǎn),作,當(dāng)面積最大時(shí),求的長(zhǎng);

3軸上的點(diǎn),過(guò)軸與拋物線交于,過(guò)軸于,當(dāng)以為頂點(diǎn)的三角形與以為頂點(diǎn)的三角形相似時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017江西省)如圖1,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫(huà)面的視線角”α約為20°,而當(dāng)手指接觸鍵盤(pán)時(shí),肘部形成的手肘角”β約為100°.圖2是其側(cè)面簡(jiǎn)化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離AB的長(zhǎng);

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤(pán)上,其到地面的距離FH=72cm.請(qǐng)判斷此時(shí)β是否符合科學(xué)要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司銷(xiāo)售部為了調(diào)動(dòng)銷(xiāo)售員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對(duì)銷(xiāo)售員進(jìn)行適當(dāng)?shù)莫?jiǎng)勵(lì).為了確定一個(gè)適當(dāng)?shù)脑落N(xiāo)售目標(biāo),該公司統(tǒng)計(jì)了銷(xiāo)售部每位銷(xiāo)售員在某月的銷(xiāo)售額(單位:萬(wàn)元),并將結(jié)果繪制成如圖所示的統(tǒng)計(jì)圖.

1 2

1)補(bǔ)全如圖1所示的統(tǒng)計(jì)圖;

2)月銷(xiāo)售額在 萬(wàn)元的人數(shù)最多,該公司銷(xiāo)售部人均月銷(xiāo)售額是 萬(wàn)元;

3)若想讓一半左右的銷(xiāo)售員都能達(dá)到銷(xiāo)售目標(biāo),你認(rèn)為月銷(xiāo)售額定為多少合適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,邊的中點(diǎn),點(diǎn)是正方形內(nèi)一動(dòng)點(diǎn),,連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連接

1)如圖1,求證:;

2)如圖2,若,三點(diǎn)共線,求點(diǎn)到直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2)、B2,b)兩點(diǎn),與y軸相交于點(diǎn)C

1)求m,n的值;

2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),求△ABD的面積;

3)在坐標(biāo)軸上是否存在異于D點(diǎn)的點(diǎn)P,使得SPAB=SDAB?若存在,直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC中,AB=4cm,以C為圓心,1cm長(zhǎng)為半徑畫(huà)⊙C,點(diǎn)P在⊙C上運(yùn)動(dòng),連接AP,并將AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°AP′,點(diǎn)D是邊AC的中點(diǎn),連接DP′.在點(diǎn)P移動(dòng)的過(guò)程中,線段DP′長(zhǎng)度的最小值為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是☉O的直徑,DC是☉O的切線,點(diǎn)C是切點(diǎn),ADDC,垂足為D,且與圓O相交于點(diǎn)E.

(1)求證:DAC=BAC.

(2)若☉O的直徑為5cm,EC=3cm,AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案