【題目】如圖1,已知,軸,,點的坐標為,點的坐標為,點在第四象限.邊上的一個動點.

1)若點在邊上,,求點的坐標;

2)若點在邊上,點關于一條坐標軸對稱的點落在直線上,求點的坐標;

3)若點在邊、上,點軸的交點,如圖2,過點軸的平行線,過點軸的平行線,它們相交于點,將沿直線翻折,當點的對應點落在坐標軸上時,求點的坐標(直接寫出答案).

【答案】1)點的坐標為;

2)點的坐標為;

3)點的坐標為.

【解析】

1)由題意點P與點C重合,可得點P坐標為(34);

2)分兩種情形①當點P在邊AD上時,②當點P在邊AB上時,分別列出方程即可解決問題;

3)分三種情形①如圖2中,當點P在線段CD上時.②如圖3中,當點PAB上時.@如圖4中,當點P在線段AD上時,分別求解即可;

解:(1)在中,,

∴點與點重合,

∴點的坐標為.

2)①當點在邊上時,由已知得,直線的函數(shù)表達式為,

,且,

若點關于軸對稱點在直線上,

,

解得,

此時.

若點關于軸對稱點在直線上,

,

解得,

此時.

②當點在邊上時,設,且

若點關于軸對稱點在直線上,

,

解得,

此時.

若點關于軸對稱點在直線上,

,

解得,

此時.

綜上所述,點的坐標為.

3)點的坐標為.

解答如下:

∵直線,

.

①如圖3,當點邊上時,可設,且,則可得,

,

,則,即,則,

中,由勾股定理得,解得,

;

②如圖4,當點邊上時,設,則.同上可證得,則,即,則,在中,由勾股定理得,解得,則

③如圖5,當點邊上時,設,此時軸上,則四邊形是正方形,所以,則.

綜上所述,點的坐標為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在的正方形方格中,的頂點都在邊長為1的小正方形的頂點上.

1)填空: , ;

2)判斷是否相似,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,上,同時從點出發(fā),分別沿以每秒個單位長度的速度向點勻速運動,點到達點后立刻以原速度沿向點運動,點運動到點時停止,點也隨之停止.在點運動過程中,以為邊作正方形使它與在線段的同鍘.設運動的時間為秒,正方形重疊部分面積為

時,求正方形的頂點剛好落在線段上時的值;

時,直接寫出當為等腰三角形時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙人510次投籃命中次數(shù)如圖

1)填寫表格.

平均數(shù)

眾數(shù)

中位數(shù)

方差

______

8

8

______

8

______

______

3.2

2)①教練根據(jù)這5個成績,選擇甲參加投籃比賽,理由是什么?

②如果乙再投籃1場,命中8次,那么乙的投監(jiān)成績的方差將會怎樣變化?(變大”“變小不變

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A、BC均落在格點上.

1△ABC的面積等于    ;

2)若四邊形DEFG△ABC中所能包含的面積最大的正方形,請你在如圖所示的網格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明)    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一邊是另一邊的倍的三角形叫做智慧三角形,這兩邊中較長邊稱為智慧邊,這兩邊的夾角叫做智慧角.

1)已知為智慧三角形,且的一邊長為,則該智慧三角形的面積為_________

2)如圖①,在中,,,求證:是智慧三角形;

3)如圖②,是智慧三角形,為智慧邊,為智慧角,,點在函數(shù))的圖象上,點在點的上方,且點的縱坐標為,當是直角三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線 為常數(shù))與軸交于點軸交于點,點為拋物線頂點.

(Ⅰ)當時,求點,點的坐標;

(Ⅱ)①若頂點在直線上時,用含有的代數(shù)式表示;

②在①的前提下,當點的位置最高時,求拋物線的解析式;

(Ⅲ)若,當滿足值最小時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與軸交于兩點,與軸交于,對稱軸為直線,頂點為

1)求該二次函數(shù)的解析式;

2)經過兩點的直線交拋物線的對稱軸于點,點為直線上方拋物線上的一動點,當點在什么位置時,的面積最大?并求此時點的坐標及的最大面積;

3)如圖,平移拋物線,使拋物線的頂點在射線上移動,點平移后的對應點為,點的對應點為點,連接、,是否能為等腰三角形?若能,請求出所有符合條件的點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AEF中,∠EAF=45°,AGEF于點G,現(xiàn)將AEG沿AE折疊得到AEB,將AFG沿AF折疊得到AFD,延長BEDF相交于點C

1)試判斷四邊形ABCD的形狀,并給出證明;

2)連接BD分別交AEAF于點M、N,將ABM繞點A逆時針旋轉,使ABAD重合,得到ADH,試判斷線段MNND、DH之間的數(shù)量關系,并說明理由.

3)若EG=2,GF=3,BM=2,求AG、MN的長.

查看答案和解析>>

同步練習冊答案