【題目】如圖所示,在平面直角坐標系中,已知,

1)在圖中畫出的面積是_____________;

2)若點與點關于軸對稱,則點的坐標為_____________

3)已知軸上一點,若的面積為,求點的坐標.

【答案】(1)4;(2);(3)

【解析】

1)根據(jù)指標坐標系中點的位置畫出△ABC,作C垂直于y軸直線垂足為E, 作C垂直于x軸直線垂足為F,△ABC的面積等于矩形CEOF減去△CEA,△ABO,△BCF即可.

2)根據(jù)對稱軸的性質(zhì)求出D坐標即可;

(3)△ACQ的高是CE4,根據(jù)面積公式求出AQ,注意Q點為兩組坐標.

解:(1)如圖所示:SABC=S矩形CEOF-SABO-S△CEA-S△BCF

= ;

故答案為:;

2)點與點關于軸對稱,則點的坐標為:;

故答案為:

3軸上一點,的面積為

,

點坐標為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重慶八中宏帆中學某年級為了選拔參加全國漢字聽寫大賽重慶賽區(qū)比賽的隊員,特在年級舉行全體學生的漢字聽寫比賽,首輪每位學生聽寫漢字39個.現(xiàn)隨機抽取了部分學生的聽寫結(jié)果,繪制成如圖的圖表.

組別

正確字數(shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根據(jù)以上信息完成下列問題:

(1)統(tǒng)計表中的m=   ,n=   ,并補全條形統(tǒng)計圖;

(2)已知該年級共有1500名學生,如果聽寫正確的字的個數(shù)不少于24個則進入第二輪的比賽,請你估計本次聽寫比賽順利進入第二輪的學生人數(shù);

(3)第二輪比賽過后,為了更有針對性地應對本次大賽,該年級決定從沒有擔任班主任的5個語文老師(其中3個男老師2個女老師)中隨機抽取兩個老師對勝出的學生進行培訓、輔導.請用樹狀圖或列表法求出抽取的兩個老師恰好都是男老師的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,放置的是一副斜邊相等的直角三角板,其中ABBC,連接BD交公共的斜邊ACO點.

(1)證明:BD平分∠ADC;

(2)求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】滿足下列條件的△ABC不是直角三角形的是()

A. BC=1,AC=2,AB=

B. BC=1,AC=2,AB=

C. BC:AC:AB=3:4:5

D. ∠A:∠B:∠C=3:4:5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

已知:如圖,在正方形ABCD中,邊AB=a1

按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關系,并且一個比一個小.

操作步驟

作法

由操作步驟推斷(僅選取部分結(jié)論)

第一步

在第一個正方形ABCD的對角線AC上截取AE=a1,再作EFAC于點E,EF與邊BC交于點F,記CE=a2

(i)EAF≌△BAF(判定依據(jù)是①);

(ii)CEF是等腰直角三角形;

(iii)用含a1的式子表示a2為②

第二步

CE為邊構(gòu)造第二個正方形CEFG;

第三步

在第二個正方形的對角線CF上截取FH=a2,再作IHCF于點H,IH與邊CE交于點I,記CH=a3

(iv)用只含a1的式子表示a3為③

第四步

CH為邊構(gòu)造第三個正方形CHIJ

這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④

請解決以下問題:

(1)完成表格中的填空:

      ;   ;   

(2)根據(jù)以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=60°,點D、E分別為邊BC、AC上的點,連接DE,過點EEF∥BCABF,若BC=CE,CD=6,AE=8,∠EDB=2∠A,則BC=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD垂直BC于點D,且AD=BCBC上方有一動點P滿足,則點PB、C兩點距離之和最小時,∠PBC的度數(shù)為(

A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB的垂直平分線EFBC于點E,交AB于點F,D是線段CE的中點,ADBC于點D.若∠B36°BC8,則AB的長為__

查看答案和解析>>

同步練習冊答案