【題目】如圖,在平面直角坐標系中,正比例函數(shù)y=kxk>0)與反比例函數(shù)y= 的圖象分別交于A、C兩點,已知點B與點D關于坐標原點O成中心對稱,且點B的坐標為(m , 0).其中m>0.

(1)四邊形ABCD的是 . (填寫四邊形ABCD的形狀)
(2)當點A的坐標為(n,3)時,四邊形ABCD是矩形,求mn的值.
(3)試探究:隨著km的變化,四邊形ABCD能不能成為菱形?若能,請直接寫出k的值;若不能,請說明理由.

【答案】
(1)平行四邊形
(2)

解:因為A(n,3),且A在反比例函數(shù)y=

則n=1,A (1,3).

∵ 四邊形ABCD是矩形,

∴OB=OA=,

則m=.

,∴mn=.


(3)

不能.因為當四邊形ABCD為菱形時,則AC⊥BD.

∵BD在x軸上,

∴AC在y軸上,

而反比例函數(shù)y=與y軸沒有交點,

則隨著km的變化,四邊形ABCD不能成為菱形.


【解析】(1)由中心對稱可知OA=OC,OB=OD,則四邊形ABCD是平行四邊形;
(2)可求出n的值;根據(jù)矩形的性質(zhì)可得OA=OB,則可求出m;
(3)根據(jù)菱形的對角線互相垂直去判斷.
【考點精析】關于本題考查的平行四邊形的判定和菱形的性質(zhì),需要了解兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( )
A.x4+x4=2x8
B.x3x2=x6
C.(x2y)3=x6y3
D.(x﹣y)6÷(y﹣x)3=(x﹣y)3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有A、B、C三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在(
A.在AC,BC兩邊高線的交點處
B.在AC,BC兩邊中線的交點處
C.在AC,BC兩邊垂直平分線的交點處
D.在∠A,∠B兩內(nèi)角平分線的交點處

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合,則∠OEC的度數(shù)為(
A.72°
B.100°
C.108°
D.120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+m2x20的一個根是1,則m的值是( 。

A.1B.2C.±1D.±2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=mx+n與y= ,其中m≠0,n≠0,那么它們在同一坐標系中的圖像可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB為邊向外作等邊△ACD、等邊△ABE,EF⊥AB,垂足為F,連接DF,當= 時,四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列性質(zhì)中菱形不一定具有的性質(zhì)是( )

A. 對角線互相平分 B. 對角線相等

C. 對角線互相垂直 D. 既是軸對稱圖形又是中心對稱圖形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“十三五”規(guī)劃綱要中,“全民閱讀”位列國家八大文化重大工程之一,我縣各學校一直積極開展課外閱讀活動,我縣某初中學校為了解全校學生每周課外閱讀的時間量t(單位:小時),采用隨機抽樣的方法抽取部分學生進行了問卷調(diào)查,調(diào)查結(jié)果按0≤t<2,2≤t<3,3≤t<4,t≥4分為四個等級,并分別用A、B、C、D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題(寫出規(guī)范完整計算步驟):

(1)求這次調(diào)查的學生總數(shù)是多少人,并求出x的值;
(2)在統(tǒng)計圖①中,t≥4部分所對應的圓心角是多少度?
(3)將圖②補充完整;
④若該校共有學生1200人,試估計每周課外閱讀時間量滿足2≤t<4的人數(shù).

查看答案和解析>>

同步練習冊答案