【題目】如圖,點A1,A2在射線OA上,B1在射線OB上,依次作A2B2∥A1B1,A3B2∥A2B1,A3B3∥A2B2,A4B3∥A3B2,…. 若的面積分別為1、9,則的面積是_________

【答案】

【解析】根據(jù)面積比等于相似比的平方,從而可推出相鄰兩個三角形的相似比為1:3,面積比為1:9,先利用等底三角形的面積之比等于高之比可求出第一個及第二個三角形的面積,再根據(jù)規(guī)律即可解決問題.

解:∵△A2B1B2和△A3B2B3的面積分別為1、9,A3B3∥A2B2,A3B2∥A2B1,

∴∠B1B2A2=∠B2B3A3,∠A2B1B2=∠A3B2B3,

∴△A2B1B2∽△A3B2B3,

====

∵A3B2∥A2B1,

∴△OA2B1∽△OA3B2

===,

∴△OB1A2的面積為,△A1B1A2的面積為,△A2B2A3的面積為3,△A3B3A4的面積為27,

∴△A1007B1007A1008`的面積為×32(n-1)=32n-3=32011,

故答案為32011.

“點睛”此題考查了相似三角形的判定與性質即平行線的性質,解答本題的關鍵是掌握相似比等于面積比的平方,及平行線分線段成比例,難度較大,注意仔細觀察圖形,得出規(guī)律.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】不等式2x+54x1的非負整數(shù)解是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課上,同學們判斷一個四邊形門框是否為矩形.下面是某學習小組4位同學擬定的方案,其中正確的是

A. 測量對角線是否平分 B. 測量兩組對邊是否分別相等

C. 測量其中三個角是否是直角 D. 測量對角線是否相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABBD,ADBC,∠ADB=45°,∠C=60°,AB=.

求四邊形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABN中,∠B =90°,點MAB上的動點(不與A,B兩點重合),點CBN延長線上的動點(不與點N重合),且AM=BC,CN=BM,連接CMAN交于點P.

(1)在圖1中依題意補全圖形;

(2)小偉通過觀察、實驗,提出猜想:在點M,N運動的過程中,始終有∠APM=45°.小偉把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的一種思路:

要想解決這個問題,首先應想辦法移動部分等線段構造全等三角形,證明線段相等,再構造平行四邊形,證明線段相等,進而證明等腰直角三角形,出現(xiàn)45°的角,再通過平行四邊形對邊平行的性質,證明∠APM=45°.

他們的一種作法是:過點MAB下方作MDAB于點M,并且使MD=CN.通過證明△AMDCBM,得到AD=CM,再連接DN,證明四邊形CMDN是平行四邊形,得到DN=CM,進而證明△ADN是等腰直角三角形,得到∠DNA=45°.又由四邊形CMDN是平行四邊形,推得∠APM=45°.使問題得以解決.

請你參考上面同學的思路,用另一種方法證明∠APM=45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鐘表在5點30分時,它的時針和分針所成的銳角是( ).
A.15°
B.70°
C.30°
D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩組鄰邊分別相等的四邊形叫做箏形.如圖1,四邊形ABCD是一個箏形,其中AD=CD,AB=CB,我們稱這個四邊形是“箏形ABCD”.

(1)根據(jù)箏形的定義判斷下列命題是否正確,真命題打“√”,假命題打“×”.
①箏形有一組對角相等.
②菱形是箏形.
③箏形的面積為兩條對角線長度的乘積.
(2)如圖2,有一個公共頂點B的兩個正方形ABCD與正方形BEFG全等,邊AD與EF相交于點H.請你判斷四邊形BEHA是否是“箏形”,說明你的理由;
(3)如圖3,當∠EBC=30°時,延長DA交GF于點K.若正方形ABCD邊長為 ,求線段AK的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,對角線AC、BD相交于點O,過點O作OE⊥BD交AD于點E.已知AB=2,△DOE的面積為 ,則AE的長為(
A.
B.2
C.1.5
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個角的兩邊分別平行于另一個角的兩邊,且其中一個角是55°,則另一個角的度數(shù)為 ______。

查看答案和解析>>

同步練習冊答案