【題目】為了解七年級學生上學期參加社會實踐活動的情況,隨機抽查A市七年級部分學生參加社會實踐活動天數(shù),并根據(jù)抽查結果制作了如下不完整的頻數(shù)分布表和條形統(tǒng)計圖.
A市七年級部分學生參加社會實踐活動天數(shù)的頻數(shù)分布表

天數(shù)

頻數(shù)

頻率

3

20

0.10

4

30

0.15

5

60

0.30

6

a

0.25

7

40

0.20

A市七年級部分學生參加社會實踐活動天數(shù)的條形統(tǒng)計圖

根據(jù)以上信息,解答下列問題;
(1)求出頻數(shù)分布表中a的值,并補全條形統(tǒng)計圖.
(2)A市有七年級學生20000人,請你估計該市七年級學生參加社會實踐活動不少于5天的人數(shù).

【答案】
(1)解:由題意可得:a=20÷01×0.25=50(人),如圖所示:


(2)解:由題意可得:20000×(0.30+0.25+0.20)

=15000(人),

答:該市七年級學生參加社會實踐活動不少于5天的人數(shù)約為15000人


【解析】此題主要考查了條形統(tǒng)計圖的應用以及利用樣本估計總體,根據(jù)題意求出樣本總人數(shù)是解題關鍵.(1)利用表格中數(shù)據(jù)求出總人數(shù),進而利用其頻率求出頻數(shù)即可,再補全條形圖;(2)利用樣本中不少于5天的人數(shù)所占頻率,進而估計該市七年級學生參加社會實踐活動不少于5天的人數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過正方形ABCD頂點B,C的⊙O與AD相切于點P,與AB,CD分別相交于點E,F(xiàn),連接EF.
(1)求證:PF平分∠BFD;
(2)若tan∠FBC= ,DF= ,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,

(1)求證:四邊形ADCE為矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y= x2+x﹣
(1)用配方法將y= x2+x﹣ 化成y=a(x﹣h)2+k的形式;
(2)在平面直角坐標系中,畫出這個二次函數(shù)的圖象;
(3)根據(jù)圖象填空:
①當x時,y隨x的增大而增大;
②當﹣2<x<2時,則y的取值范圍是;
③關于x的方程 x2+x﹣ =m沒有實數(shù)解,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,小敏利用課余時間制作了一個臉盆架,圖2是它的截面圖,垂直放置的臉盆與架子的交點為A,B,AB=40cm,臉盆的最低點C到AB的距離為10cm,則該臉盆的半徑為cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于坐標平面內的點,現(xiàn)將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經1次斜平移后的點的坐標為(3,5),已知點A的坐標為(1,0).

(1)分別寫出點A經1次,2次斜平移后得到的點的坐標.
(2)如圖,點M是直線l上的一點,點A關于點M的對稱點的點B,點B關于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經n次斜平移后得到,且點C的坐標為(7,6),求出點B的坐標及n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式 ,請結合題意填空,完成本題的解答.
(1)解不等式①,得;
(2)解不等式②,得;
(3)把不等式①和②的解集在數(shù)軸上表示出來

(4)原不等式組的解集為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(不包括端點A、C),過點P作PE⊥BC于點E,過點E作EF∥AC,交AB于點F.設PC=x,
PE=y.

(1)求y與x的函數(shù)關系式;
(2)是否存在點P使△PEF是Rt△?若存在,求此時的x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果acb,那么(a,b)=c.例如:∵23=8,(2,8)=3.

(1)根據(jù)上述規(guī)定,填空:(3,27)=________,(5,1)=________,=________;

(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4),小明給出了如下的理由:

(3n,4n)=x,則(3n)x=4n,即(3x)n=4n,

3x=4,即(3,4)=x,

(3n,4n)=(3,4).

請你嘗試運用這種方法判斷(3,4)+(3,5)=(3,20)是否成立,若成立,請說明理由.

查看答案和解析>>

同步練習冊答案