【題目】閱讀理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.
(i)二次項系數(shù)2=1×2;
(ii)常數(shù)項﹣3=﹣1×3=1×(﹣3),驗算:“交叉相乘之和”;

1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5
(iii)發(fā)現(xiàn)第③個“交叉相乘之和”的結(jié)果1×(﹣3)+2×1=﹣1,等于一次項系數(shù)﹣1.
即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,則2x2﹣x﹣3=(x+1)(2x﹣3).
像這樣,通過十字交叉線幫助,把二次三項式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12=

【答案】(x+3)(3x﹣4)
【解析】解:3x2+5x﹣12=(x+3)(3x﹣4).
所以答案是:(x+3)(3x﹣4)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司招聘職員兩名,對甲、乙、丙、丁四名候選人進(jìn)行了筆試和面試,各項成績滿分均為100分,然后再按筆試占60%、面試占40%計算候選人的綜合成績(滿分為100分).

他們的各項成績?nèi)缦卤硭荆?/span>

修造人

筆試成績/分

面試成績/分

90

88

84

92

x

90

88

86

(1)直接寫出這四名候選人面試成績的中位數(shù);

(2)現(xiàn)得知候選人丙的綜合成績?yōu)?7.6分,求表中x的值;

(3)求出其余三名候選人的綜合成績,并以綜合成績排序確定所要招聘的前兩名的人選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點E為BC的中點,AB=4,∠BED=120°,則圖中陰影部分的面積之和為(  )

A.
B.2
C.
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個正方形在平面直角坐標(biāo)系內(nèi)的位置如圖所示,已知點 A 的坐標(biāo)為(3,0),線段 ACBD 的交點是 M

1寫出點 M、B、CD 的坐標(biāo);

2當(dāng)正方形中的點 M 由現(xiàn)在的位置經(jīng)過平移后,得到點 M(﹣46)時,寫出點 A、B、

C、D 的對應(yīng)點 A、B、C′、D的坐標(biāo),并求出四邊形 ABC′D的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD 中,點E,O,F分別是邊ABAC,AD的中點,連接CE、CF、OE、OF

1)求證:△BCE≌△DCF;

2)當(dāng)ABBC滿足什么條件時,四邊形AEOF正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,B=10°,ACB=20°,AB=4cm,ABC逆時針旋轉(zhuǎn)一定角度后與ADE重合,且點C恰好成為AD的中點.

(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);

(2)求出BAE的度數(shù)和AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形OABC在平面直角坐標(biāo)系中的位置如圖所示.∠AOC=45°,OC= ,則點B的坐標(biāo)為( 。.

A.( ,1)
B.(1,
C.( ,1)
D.(1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,點A(o,m),B(n,0)m, n滿足.

(1)A,B的坐標(biāo).

(2)如圖1, E為第二象限內(nèi)直線AB上的一點,且滿足,求點E的橫坐標(biāo).

(3)如圖2,平移線段BAOC, BO是對應(yīng)點,AC是對應(yīng)點,連接AC, EBA的延長線上一點,連接EO, OF平分∠COE, AF平分∠EAC, OFAF于點F,若∠ABO+OEB=α,請在圖2中將圖形補(bǔ)充完整,并求∠F (用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)圖象如圖所示,則下列結(jié)論:①;②;③關(guān)于的方程的解為;④當(dāng),.其中正確的有_______(填序號)

查看答案和解析>>

同步練習(xí)冊答案