【題目】已知直角梯形ABCD中,ADBC,A=90°,BCD為等邊三角形,AD= ,則梯形的周長(zhǎng)是_______.

【答案】+5;

【解析】

先根據(jù)BCD是等邊三角形,可得∠2=60°,BC=CD=BD,而ADBC,∠A=90°,根據(jù)平行線的性質(zhì)可求∠ABC=90°,進(jìn)而可求∠1=30°,利用直角三角形中30°的角所對(duì)的直角邊等于斜邊的一半,易求BD,再根據(jù)勾股定理可求AB,從而可求梯形的周長(zhǎng).

如圖,

∵△BCD是等邊三角形,

∴∠2=60°,BC=CD=BD,

ADBC,A=90°

∴∠ABC+A=180°,

∴∠ABC=90°,

∴∠1=90°60°=30°,

RtABD,∵∠1=30°,AD=,

BD=2AD=2,AB=,

∴梯形ABCD的周長(zhǎng)=AD+AB+BC+CD=++2+2=+5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:若為數(shù)軸上三點(diǎn),若點(diǎn)的距離是點(diǎn)的距離的2倍,我們就稱點(diǎn)的優(yōu)點(diǎn). 例如圖1中:點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為2 表示1的點(diǎn)到點(diǎn)的距離是2,到點(diǎn)的距離是1,那么點(diǎn)的優(yōu)點(diǎn);又如,表示0的點(diǎn)到點(diǎn)的距離是1,到點(diǎn)的距離是2,那么點(diǎn)就不是的優(yōu)點(diǎn),但點(diǎn),的優(yōu)點(diǎn).

知識(shí)運(yùn)用:(1)如圖2,為數(shù)軸上兩點(diǎn),點(diǎn)所表示的數(shù)為,點(diǎn)所表示的數(shù)為4 那么數(shù)________所表示的點(diǎn)是的優(yōu)點(diǎn);(直接填在橫線上)

2)如圖3,為數(shù)軸上兩點(diǎn),點(diǎn)所表示的數(shù)為,點(diǎn)所表示的數(shù)為40 現(xiàn)有一只電子螞蟻從點(diǎn)出發(fā),以4個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)停止. 當(dāng)為何值時(shí),、中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的優(yōu)點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)前,“精準(zhǔn)扶貧”工作已進(jìn)入攻堅(jiān)階段,凡貧困家庭均要“建檔立卡”某初級(jí)中學(xué)七年級(jí)共有四個(gè)班,已“建檔立卡”的貧困家庭的學(xué)生人數(shù)按一、二、三、四班分別記為,,,,現(xiàn)對(duì),,統(tǒng)計(jì)后,制成如圖所示的統(tǒng)計(jì)圖.

求七年級(jí)已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù);

將條形統(tǒng)計(jì)圖補(bǔ)充完整,并求出所在扇形的圓心角的度數(shù);

現(xiàn)從,中各選出一人進(jìn)行座談,若中有一名女生,中有兩名女生,請(qǐng)用樹(shù)狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)軸的正半軸上,點(diǎn)在直線上.

1)若點(diǎn),求點(diǎn)的坐標(biāo);

2)連接,若點(diǎn),求的長(zhǎng);

3)過(guò)點(diǎn)軸于點(diǎn),且交直線于點(diǎn).若,,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)O在直線AB上,作射線OC,點(diǎn)D在平面內(nèi),∠BOD與∠AOC互余.

(1)若∠AOC:BOD=4:5,則∠BOD=

(2)若∠AOC=α(0°<α≤45°),ON平分∠COD

①當(dāng)點(diǎn)D在∠BOC內(nèi),補(bǔ)全圖形,直接寫出∠AON的值(用含α的式子表示);

②若∠AON與∠COD互補(bǔ),求出α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD,ADBC,C=36°,B=54°,點(diǎn)MN分別是AD、BC的中點(diǎn),如果BC=10,AD=4,那么MN的長(zhǎng)是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊在數(shù)軸上,數(shù)軸上點(diǎn)表示的數(shù)為,正方形的面積為16

1)數(shù)軸上點(diǎn)表示的數(shù)為__________

2)將正方形沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的正方形記為,移動(dòng)后的正方形與原正方形重疊部分的面積記為.當(dāng)時(shí),畫(huà)出圖形,并求出數(shù)軸上點(diǎn)表示的數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】借助一副三角板,可以得到一些平面圖形

1)如圖1,∠AOC   度.由射線OA,OBOC組成的所有小于平角的和是多少度?

2)如圖2,∠1的度數(shù)比∠2度數(shù)的3倍還多30°,求∠2的度數(shù);

3)利用圖3,反向延長(zhǎng)射線OAM,OE平分∠BOMOF平分∠COM,請(qǐng)按題意補(bǔ)全圖(3),并求出∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用如圖1所示的曲尺形框框(有三個(gè)方向),可以套住圖2日歷中的三個(gè)數(shù),設(shè)被框住的三個(gè)數(shù)中(第一個(gè)框框住的最大的數(shù)為、第二個(gè)框框住的最大的數(shù)為、第三個(gè)框框住的最大的數(shù)為

1)第一個(gè)框框住的三個(gè)數(shù)的和是: ,第二個(gè)框框住的三個(gè)數(shù)的和是: ,第三個(gè)框框住的三個(gè)數(shù)中的和是:

2)這三個(gè)框框住的數(shù)的和分別能是81嗎?若能,則分別求出最大的數(shù)、

查看答案和解析>>

同步練習(xí)冊(cè)答案