【題目】某商店將進價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,

1)問應將每件售價定為多少元時,才能使每天利潤為640元且成本最少?

2)問應將每件售價定為多少元時,才能使每天利潤最大?

【答案】(1)每件售價定為16元時,才能使每天的利潤為640元(2)當售價為14元時,利潤最大為720元

【解析】試題分析:(1)根據(jù)等量關(guān)系利潤=(售價-進價)×銷量列出函數(shù)關(guān)系式;(2)根據(jù)(1)中的函數(shù)關(guān)系式求得利潤最大值.

試題解析:(1)設每件售價定為x元時,才能使每天利潤為640元,

,解得:x1=12,x2=16

答:應將每件售價定為1216元時,能使每天利潤為640元.

2)設利潤為y

,

當售價定為14元時,獲得最大利潤;最大利潤為720元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形中,為邊的中點,與對角線交于點,過于點

,求的長;

求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)y1的圖象與函數(shù)y2kx+b的圖象交于點A(﹣1aB(﹣8+a,1

1)求函數(shù)yykx+b的表達式;

2)觀察圖象,直接寫出不等式kx+b的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P的坐標為(0,4),直線yx3x軸、y軸分別交于點AB,點M是直線AB上的一個動點,則PM的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AC、BD相交于點O,AE平分BAD,交BCE,若EAO=15°,則BOE的度數(shù)為 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,AC=4cm,BC=3cm,點P由B出發(fā)沿BA的方向向點A勻速運動,速度為1cm/s,同時點Q由A出發(fā)沿AC的方向向點C勻速運動,速度為2cm/s,連接PQ,設運動的時間為t(s),其中0<t<2,解答下列問題:

(1)當t為何值時,以P、Q、A為頂點的三角形與ABC相似?

(2)是否存在某一時刻t,線段PQ將ABC的面積分成1:2兩部分?若存在,求出此時的t,若不存在,請說明理由;

(3)點P、Q在運動的過程中,CPQ能否成為等腰三角形?若能,請求出此時t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形ABCD沿對角線BD折疊,點C落在點E處,BEAD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為(

A. 62°B. 56°C. 31°D. 28°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1=2,∠B=C,可推得ABCD.理由如下:

∵∠1=2(已知),

且∠1=CGD   ),

∴∠2=CGD     ).

CEBF   ).

∴∠   =C   ).

又∵∠B=C(已知),

∴∠   =B(等量代換).

ABCD   ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBC,∠ACB90°,AE平分∠BAC,BFAE,交AC延長線于F,且垂足為E,則下列結(jié)論:①ADBF;②∠BAE=∠FBC;③SADBSADC;④ACCDAB;⑤AD2BE.其中正確的結(jié)論有______(填寫序號)

查看答案和解析>>

同步練習冊答案