精英家教網 > 初中數學 > 題目詳情

【題目】.如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設矩形地面,請觀察圖形,并探究下列問題:

在第個圖中,共有白色瓷磚________塊;在第個圖中,共有白色瓷磚________塊;

在第個圖中,共有瓷磚________塊;在第個圖中,共有瓷磚________塊;

如果每塊黑瓷磚元,白瓷磚元,鋪設當時,共需花多少錢購買瓷磚?

【答案】(1);(2);

【解析】

圖形發(fā)現,1個圖形中有白色瓷磚1×2,共有瓷磚3×4,2個圖形中有白色瓷磚2×3,共有瓷磚4×5,3個圖形中有白色瓷磚3×4,共有瓷磚5×6,(1)通過觀察發(fā)現規(guī)律, 4個圖形中有白色瓷磚4×5=20,n個圖形中有白色瓷磚nn+1)塊,(2)在第4個圖中,共有瓷磚6×7=42塊瓷磚,n個圖形共有瓷磚(n+2)(n+3),(3)求出當n=10時黑色和白色瓷磚的個數,然后計算總費用即可.

(1),

(2),

時,共有白色瓷磚塊,黑色瓷磚塊,

元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我市城市居民用電收費方式有以下兩種:

(甲)普通電價:全天0.53元/度;

(乙)峰谷電價:峰時(早8:00~晚21:00)0.56元/度;谷時(晚21:00~早8:00)0.36元/度.

估計小明家下月總用電量為200度,

⑴若其中峰時電量為50度,則小明家按照哪種方式付電費比較合適?能省多少元?

⑵請你幫小明計算,峰時電量為多少度時,兩種方式所付的電費相等?

⑶到下月付費時, 小明發(fā)現那月總用電量為200度,用峰谷電價付費方式比普通電價付費方式省了14元,求那月的峰時電量為多少度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線與直線相交于點;

1)求出a,b的值;

2)根據圖象直接寫出不等式的解集;

3)求出的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知OC是∠AOB內部的一條射線,MN分別為OA,OC上的點,線段OM,ON同時分別以30°/s10°/s的速度繞點O逆時針旋轉,設旋轉時間為t秒.

1)如圖①,若∠AOB120°,當OM、ON逆時針旋轉到OMON處,

①若OM,ON旋轉時間t2時,則∠BON′+COM   °;

②若OM平分∠AOCON平分∠BOC,求∠MON的值;

2)如圖②,若∠AOB4BOCOM,ON分別在∠AOC,∠BOC內部旋轉時,請猜想∠COM與∠BON的數量關系,并說明理由.

3)若∠AOC80°,OMON在旋轉的過程中,當∠MON20°t   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形中,,,將沿著對角線對折得到.

1)如圖,于點,于點,求的長.

2)如圖,再將沿著對角線對折得到,順次連接、、,求:四邊形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點M是邊BC上的一點(不與B、C重合),點NCD邊的延長線上,且滿足∠MAN=90°,聯結MN、AC,N與邊AD交于點E.

(1)求證:AM=AN;

(2)如果∠CAD=2NAD,求證:AM2=ACAE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數關系的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電動車廠一周計劃生產2100輛電動車,平均每天計劃生產300輛,由于各種原因,實際每天的生產量與計劃量相比有出入.下表是某周的生產情況(超產為正,減產為負).

1)根據記錄可知本周前三天共生產電動車多少輛?

2)本周產量最多的一天比產量最少的一天多生產電動車多少輛?

3)該廠實行每周計件工資制,每生產一輛電動車可得a元,若超額完成,則超額部分每輛再獎b(ba),少生產一輛扣b元,求該廠工人這一周的工資總額.

查看答案和解析>>

同步練習冊答案