精英家教網 > 初中數學 > 題目詳情

【題目】下列3×3網格圖都是由9個相同的小正方形組成,每個網格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.
(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形.
(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.
(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)

【答案】
(1)

如圖1所示


(2)

如圖2所示


(3)

如圖3所示


【解析】(1)根據軸對稱定義,在最上一行中間一列涂上陰影即可;(2)根據中心對稱定義,在最下一行、最右一列涂上陰影即可;(3)在最上一行、中間一列,中間一行、最右一列涂上陰影即可.本題主要考查軸對稱圖形和中心對稱圖形,掌握軸對稱圖形和中心對稱圖形定義是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且OD∥BC,OD與AC交于點E.
(1)若∠B=70°,求∠CAD的度數;
(2)若AB=4,AC=3,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四邊形ABCD的對角線交于點E,有AE=EC,BE=ED,以AB為直徑的半圓過點E,圓心為O.

(1)利用圖1,求證:四邊形ABCD是菱形.
(2)如圖2,若CD的延長線與半圓相切于點F,已知直徑AB=8.
①連結OE,求△OBE的面積.
②求弧AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.

(1)求證:四邊形AEBD是矩形;

(2)當△ABC滿足什么條件時,矩形AEBD是正方形?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=,AF平分∠DAB,過C點作CEBDE,延長AF.EC交于點H,下列結論中:①AF=FH;BO=BF;CA=CH;BE=3ED.正確的是( 。

A. ②③ B. ③④ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】國民體質監(jiān)測中心等機構開展了青少年形體測評,專家組隨機抽查了某市若干名初中生坐姿、站姿、走姿的好壞情況.我們隊專家的測評數據作了適當處理(如果一個學生有一種以上不良姿勢,我們以他最突出的一種作記載),并將統(tǒng)計結果繪制成了如下兩幅不完整的統(tǒng)計圖,請你根據圖中所給信息解答下列問題:

(1)在這次形體測評中,一共抽查了多少名學生?如果全市約有10萬名初中生,那么全市初中生中三姿不良的學生約有多少人?

(2)請直接將兩幅圖補充完整.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖在平面直角坐標系中,已知,其中滿足.

(1)填空: = _____ = _____ ;

(2)如果在第三象限內一點,請用含的式子表示⊿的面積;

(3)若⑵條件下,當時,在坐標軸上一點,使得⊿的面積與⊿的面積相等,請求出點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】成都市教育行政部門為了了解初一學生每學期參加綜合實踐活動的情況,隨機抽樣調查了某校初一學生一個學期參加綜合實踐活動的天數,并用得到的數據繪制了下面兩幅不完整的統(tǒng)計圖(如圖).

請你根據圖中提供的信息,回答下列問題:

(1)扇形統(tǒng)計圖中a=   ,該校初一學生總人數為   人;

(2)根據圖中信息,補全條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中活動時間為4的扇形所對圓心角的度數為   

(4)如果該市共有初一學生6000人,請你估計活動時間不少于4的大約有   人.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如下三個函數圖象中,有兩個函數圖象能近似地刻畫如下兩個情境:

情境:小芳離開家不久,發(fā)現把作業(yè)本忘在家里,于是返回家里找到了作業(yè)本再去學校;

情境:小芳從家出發(fā),走了一段路程后,為了趕時間,以更快的速度前進.

(1)情境, 所對應的函數圖象分別為   ,   (填寫序號).

(2)請你為剩下的函數圖象寫出一個適合的情境.

查看答案和解析>>

同步練習冊答案