【題目】尺規(guī)作圖是指用無刻度的直尺和圓規(guī)作圖。尺規(guī)作圖是起源于古希臘的數(shù)學(xué)課題.只使用圓規(guī)和直尺,并且只準許使用有限次,來解決不同的平面幾何作圖題.初中階段同學(xué)們首次接觸的尺規(guī)作圖是作一條線段等于已知線段”.

1

2

備用圖

1)如圖1,在線段外有一點,現(xiàn)在利用尺規(guī)作圖驗證兩點之間線段最短.請根據(jù)提示,用尺規(guī)完成作圖,并補充驗證步驟.

第一步,以為圓心,為半徑作弧,交線段于點,則_____________

第二步,以為圓心,為半徑作弧,交線段于點,則_____________;

____________________________________________

故:.

2)如圖2,在直線上,從左往右依次有四個點,,,,且,.現(xiàn)以為圓心,半徑長為作圓,與直線兩個交點中右側(cè)交點記為點.再以為圓心;相同半徑長作圓,與直線兩個交點中左側(cè)交點記為點.,三點中,有一點分另外兩點所連線段之比為,求半徑的長.

【答案】1)作圖見解析;AM;BN;AM ; BN ;MN2)6、10、、34.

【解析】

1)根據(jù)尺規(guī)作圖的步驟按步驟進行操作,根據(jù)線段的數(shù)量關(guān)系進行判斷即可.

2)根據(jù)題目中的線段間的關(guān)系,分類進行討論,分別為當P點在Q、F之間時,當Q點在P、F之間時,當F點在P、Q之間時,分別根據(jù)線段間的數(shù)量關(guān)系求解即可.

解:如圖:

1)第一步,以為圓心,為半徑作弧,交線段于點,則AM;

第二步,以為圓心,為半徑作弧,交線段于點,則BN;

AMBNMN

故:.

2

P點在QF之間,①PF=2QP時,

=4,

,

OP=r,

,

同理可得OQ=8-r

QP=

,

PF=8-r+6=14-r,

22r-8=14-r,

解得:r=6.

PQ=2PF

,

OF=14,

OP=r,

PF=14-r,

,

OQ=r-8

,

同理

QP=8+2×8-r=24-2r

24-2r=14-r

解得r=10.

Q點在中間時,即QF=2PQ

=4,

,

,

PQ=8-2r

QF=6+r

6+r=8-2r

r=.

F點在Q、P之間,QF=2FP

=4,

,

,

FP=r-OF=r-14,

QF=r+6,

r+6=2r-14),

解得r=34

故答案是:6、10、、34.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,把△ABC先沿x軸翻折,再向右平移3個單位,得到△A1B1C1,把這兩步操作規(guī)定為翻移變換,如圖,已知等邊三角形ABC的頂點B,C的坐標分別是(1,1),(3,1).把△ABC經(jīng)過連續(xù)3次翻移變換得到△A3B3C3,則點A的對應(yīng)點A3的坐標是( 。

A. 5,﹣B. 8,1+C. 11,﹣1D. 14,1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上有 A,BC,D 四個整數(shù)點(即各點均表示整數(shù)),且 2ABBC3CD,若 A,D 兩點所表示的數(shù)分別是-5 6,若將數(shù)軸在點 E 處折疊,點 BD 兩點重合,則點 E 表示的數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A處,測得河的北岸點B在其北偏東45°方向,然后向西走60m到達C點,測得點B在點C的北偏東60°方向.

1求∠CBA的度數(shù);

2求出這段河的寬.(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平分,平分.

1 2

1)如圖1,當內(nèi)部時

__________;(填,,

②求的度數(shù);

2)如圖2,當外部時,(1)題②的的度數(shù)是否變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形ABC的直角邊AB的長為,將△ABC繞點A逆時針旋轉(zhuǎn)15°后得到△ABC,ACBC相交于點D,則圖中陰影△ADC的面積等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+b分別交x軸、y軸于A1,0)、B01),交雙曲線y=于點C、D

1)求k、b的值;

2)寫出不等式kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點P(x,y),我們把點P′(﹣y+1,x+1)叫做點P的伴隨點,已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An

(1)若點A1的坐標為(2,1),則點A4的坐標為_____;

(2)若點A1的坐標為(a,b),對于任意的正整數(shù)n,點An均在x軸上方,則a,b應(yīng)滿足的條件為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠A60°,∠C40°DE垂直平分BC,連接BD

1)尺規(guī)作圖:過點DAB的垂線,垂足為F.(保留作圖痕跡,不寫作法)

2)求證:點DBA,BC的距離相等.

查看答案和解析>>

同步練習(xí)冊答案