【題目】尺規(guī)作圖是指用無刻度的直尺和圓規(guī)作圖。尺規(guī)作圖是起源于古希臘的數(shù)學(xué)課題.只使用圓規(guī)和直尺,并且只準許使用有限次,來解決不同的平面幾何作圖題.初中階段同學(xué)們首次接觸的尺規(guī)作圖是“作一條線段等于已知線段”.
圖1
圖2
備用圖
(1)如圖1,在線段外有一點,現(xiàn)在利用尺規(guī)作圖驗證“兩點之間線段最短”,.請根據(jù)提示,用尺規(guī)完成作圖,并補充驗證步驟.
第一步,以為圓心,為半徑作弧,交線段于點,則_____________;
第二步,以為圓心,為半徑作弧,交線段于點,則_____________;
則____________________________________________
故:.
(2)如圖2,在直線上,從左往右依次有四個點,,,,且,.現(xiàn)以為圓心,半徑長為作圓,與直線兩個交點中右側(cè)交點記為點.再以為圓心;相同半徑長作圓,與直線兩個交點中左側(cè)交點記為點.若,,三點中,有一點分另外兩點所連線段之比為,求半徑的長.
【答案】(1)作圖見解析;AM;BN;AM ; BN ;MN(2)6、10、、34.
【解析】
(1)根據(jù)尺規(guī)作圖的步驟按步驟進行操作,根據(jù)線段的數(shù)量關(guān)系進行判斷即可.
(2)根據(jù)題目中的線段間的關(guān)系,分類進行討論,分別為當P點在Q、F之間時,當Q點在P、F之間時,當F點在P、Q之間時,分別根據(jù)線段間的數(shù)量關(guān)系求解即可.
解:如圖:
(1)第一步,以為圓心,為半徑作弧,交線段于點,則AM;
第二步,以為圓心,為半徑作弧,交線段于點,則BN;
則AMBNMN
故:.
(2)
當P點在QF之間,①PF=2QP時,
∵=4,
∴,
∵OP=r,
∴,
同理可得OQ=8-r
∴QP=
∵,
∴PF=8-r+6=14-r,
2(2r-8)=14-r,
解得:r=6.
②PQ=2PF
∵,
∴OF=14,
∵OP=r,
∴PF=14-r,
∵,
∴OQ=r-8
∴,
同理
∴QP=8+2×(8-r)=24-2r
∴24-2r=14-r
解得r=10.
當Q點在中間時,即QF=2PQ
∵=4,
∴,
∵,
∴PQ=8-2r,
QF=6+r
6+r=8-2r
∴r=.
當F點在Q、P之間,QF=2FP時
∵=4,
∴,
∵,
∴FP=r-OF=r-14,
QF=r+6,
∴r+6=2(r-14),
解得r=34
故答案是:6、10、、34.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,把△ABC先沿x軸翻折,再向右平移3個單位,得到△A1B1C1,把這兩步操作規(guī)定為翻移變換,如圖,已知等邊三角形ABC的頂點B,C的坐標分別是(1,1),(3,1).把△ABC經(jīng)過連續(xù)3次翻移變換得到△A3B3C3,則點A的對應(yīng)點A3的坐標是( 。
A. (5,﹣)B. (8,1+)C. (11,﹣1﹣)D. (14,1+)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有 A,B,C,D 四個整數(shù)點(即各點均表示整數(shù)),且 2AB=BC=3CD,若 A,D 兩點所表示的數(shù)分別是-5 和 6,若將數(shù)軸在點 E 處折疊,點 B,D 兩點重合,則點 E 表示的數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A處,測得河的北岸點B在其北偏東45°方向,然后向西走60m到達C點,測得點B在點C的北偏東60°方向.
(1)求∠CBA的度數(shù);
(2)求出這段河的寬.(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,平分,平分.
圖1 圖2
(1)如圖1,當在內(nèi)部時
①__________;(填,,)
②求的度數(shù);
(2)如圖2,當在外部時,(1)題②的的度數(shù)是否變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形ABC的直角邊AB的長為,將△ABC繞點A逆時針旋轉(zhuǎn)15°后得到△AB′C′,AC與B′C′相交于點D,則圖中陰影△ADC′的面積等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b分別交x軸、y軸于A(1,0)、B(0,﹣1),交雙曲線y=于點C、D.
(1)求k、b的值;
(2)寫出不等式kx+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(x,y),我們把點P′(﹣y+1,x+1)叫做點P的伴隨點,已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An.
(1)若點A1的坐標為(2,1),則點A4的坐標為_____;
(2)若點A1的坐標為(a,b),對于任意的正整數(shù)n,點An均在x軸上方,則a,b應(yīng)滿足的條件為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,連接BD.
(1)尺規(guī)作圖:過點D作AB的垂線,垂足為F.(保留作圖痕跡,不寫作法)
(2)求證:點D到BA,BC的距離相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com