【題目】如圖,李強(qiáng)在教學(xué)樓的點(diǎn)P處觀察對(duì)面的辦公大樓,為了求得對(duì)面辦公大樓的高度,李強(qiáng)測(cè)得辦公大樓頂部點(diǎn)A的仰角為30°,測(cè)得辦公大樓底部點(diǎn)B的俯角為37°,已知測(cè)量點(diǎn)P到對(duì)面辦公大樓上部AD的距離PM30m,辦公大樓平臺(tái)CD=10m.求辦公大樓的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin37°≈,tan37°≈≈1.73)

【答案】32米

【解析】

過(guò)CPM作垂線CN,垂足為N.在△PMA,可求AM,PN.在△PBN,利用正切可求BN,利用總高度h=AM+BN即可得到結(jié)論

過(guò)CPM作垂線CN,垂足為NPMA中,∵APM=30°,∴PM=AM=30,解得AM==17.3PN=PMNM=PMCD=3010=20PBN中,∵tan37°=,∴BM==15,所以總高度h=AM+BN=32.332

辦公大樓的高度約為32

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,點(diǎn)B,C,D在同一條直線上,都是等邊三角形,BE交AC于點(diǎn)F,AD交CE于點(diǎn)H.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,紙片中,,,,點(diǎn)在邊上,以為折痕折疊得到,與邊交于點(diǎn),若為直角三角形,則的長(zhǎng)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,圖形ABCD是由兩個(gè)二次函數(shù)y1=kx2+mk<0)與y2=ax2+ba>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).

(1)直接寫(xiě)出這兩個(gè)二次函數(shù)的表達(dá)式;

(2)判斷圖形ABCD是否存在內(nèi)接正方形(正方形的四個(gè)頂點(diǎn)在圖形ABCD上),并說(shuō)明理由;

(3)如圖2,連接BC,CD,AD,在坐標(biāo)平面內(nèi),求使得BDCADE相似(其中點(diǎn)C與點(diǎn)E是對(duì)應(yīng)頂點(diǎn))的點(diǎn)E的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是(  )

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線Ly=3x+2,現(xiàn)有下列命題:

①過(guò)點(diǎn)P-11)與直線L平行的直線是y=3x+4;②若直線Lx軸、y軸分別交于AB兩點(diǎn),則AB=;③若點(diǎn)M-,1),Nab)都在直線L上,且a>-,則b>1; ④若點(diǎn)Q到兩坐標(biāo)軸的距離相等,且QL上,則點(diǎn)Q在第一或第二象限。其中正確的命題是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)平面上有四個(gè)點(diǎn)AB,CD,按照以下要求作圖:

作直線AD;

作射線CB交直線AD于點(diǎn)E;

連接AC,BD交于點(diǎn)F;

(2)圖中共有 條線段;

(3)若圖中FAC的一個(gè)三等分點(diǎn),AFFC,已知線段AC上所有線段之和為18,求AF長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】推理探索:(1)數(shù)軸上點(diǎn)、、、、 分別表示數(shù)0、 2 、3、5、 4 ,解答下列問(wèn)題.

①畫(huà)出數(shù)軸表示出點(diǎn)、、、、;

、兩點(diǎn)之間的距離是 ;

、 兩點(diǎn)之間的距離是 ;

兩點(diǎn)之間的距離是 ;

2)請(qǐng)思考,若點(diǎn)表示數(shù) ,點(diǎn) 表示數(shù),且 ,則用含 , 的代數(shù)式表示 兩點(diǎn) 間的距離是 ;

3)請(qǐng)歸納,若點(diǎn) 表示數(shù),點(diǎn) 表示數(shù),則 、 兩點(diǎn)間的距離用含、的代數(shù)式表示是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣1,﹣2),B(﹣1,﹣4),C2,﹣3).

1)將△ABC先向右平移4個(gè)單位,再向上平移6個(gè)單位,得到△A1B1C1,作出△A1B1C1,線段AC在平移過(guò)程中掃的面積為   ;

2)作出△A1B1C1關(guān)于y軸對(duì)稱的圖形△A2B2C2,則坐標(biāo)C2   ;

3)若△ABD與△ABC全等,則點(diǎn)D的坐標(biāo)為   (點(diǎn)C與點(diǎn)D不重合)

查看答案和解析>>

同步練習(xí)冊(cè)答案