分析 由矩形的性質(zhì)得出∠B=90°,BC=AD=10,由勾股定理求出AE,由翻折變換的性質(zhì)得出△AFE≌△ABE,得出∠AEF=∠AEB,EF=BE=5,因此EF=CE,由等腰三角形的性質(zhì)得出∠EFC=∠ECF,由三角形的外角性質(zhì)得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=$\frac{BE}{AE}$,即可得出結(jié)果.
解答 解:如圖所示:
∵四邊形ABCD是矩形,
∴∠B=90°,BC=AD=10,
∵E是BC的中點,
∴BE=CE=$\frac{1}{2}$BC=5,
∴AE=$\sqrt{A{B}^{2}+B{E}^{2}}$=$\sqrt{{6}^{2}+{5}^{2}}$=$\sqrt{61}$,
由翻折變換的性質(zhì)得:△AFE≌△ABE,
∴∠AEF=∠AEB,EF=BE=5,
∴EF=CE,
∴∠EFC=∠ECF,
∵∠BEF=∠EFC+∠ECF,
∴∠AEB=∠ECF,
∴cos∠ECF=cos∠AEB=$\frac{BE}{AE}$=$\frac{5}{\sqrt{61}}$=$\frac{5\sqrt{61}}{61}$.
故答案為:$\frac{5\sqrt{61}}{61}$.
點評 本題考查了矩形的性質(zhì)、勾股定理、翻折變換的性質(zhì)、等腰三角形的判定與性質(zhì)、三角形的外角性質(zhì)、三角函數(shù);熟練掌握矩形的性質(zhì)和翻折變換的性質(zhì),證出∠AEB=∠ECF是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com