【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點C,將一個三角板的直角頂點與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點D,E.
當三角板繞點C旋轉到CD與OA垂直時(如圖①),易證:OD+OE= OC;
當三角板繞點C旋轉到CD與OA不垂直時,即在圖②,圖③這兩種情況下,上述結論是否仍然成立?若成立,請給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關系?請寫出你的猜想,不需證明.

【答案】證明:過點C分別作OA,OB的垂線,垂足分別為P,Q.

有△CPD≌△CQE,
∴DP=EQ,
∵OP=OD+DP,OQ=OE-EQ,
又∵OP+OQ= OC,
即OD+DP+OE-EQ= OC,
∴OD+OE= OC.
圖③不成立,
有數(shù)量關系:OE-OD= OC
過點C分別作CK⊥OA, CH⊥OB, ∵OC為∠AOB的角平分線,且CK⊥OA,CH⊥OB, ∴CK=CH,∠CKD=∠CHE=90°, 又∵∠KCD與∠HCE都為旋轉角, ∴∠KCD=∠HCE, ∴△CKD≌△CHE, ∴DK=EH, ∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK, 由(1)知:OH+OK= OC, ∴OD,OE,OC滿足OE-OD= OC.
【解析】模仿第1種特例,過點C作垂線,構造出全等的三角形,即△CPD≌△CQE,由對應邊相等可得出另兩個類似的結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,C點在EF上,,BC平分,且.下列結論:

AC平分;②;③;④.其中結論正確的個數(shù)有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點A在射線CE上,∠C=∠D

⑴如圖1,若ADBC,求證:BDAC;

⑵如圖2,若∠BAC=∠BAD,BDBC,請?zhí)骄俊?/span>DAE與∠C的數(shù)量關系,寫出你的探究結論,并加以證明;

⑶如圖3,在⑵的條件下,過點DDFBC交射線于點F,當∠DFE8DAE時,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點,,,點是三角形上任意一點,三角形經過平移后得到三角形,點的對應點為.

1)直接寫出點的坐標______________.

2)畫出三角形平移后的三角形.

3)在軸上是否存在一點,使三角形的面積等于三角形面積的,若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點A是反比例函數(shù)y=-圖象上一點,過點Ax軸的垂線,垂足為B點,若OA=2,則AOB的周長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據圖中提供的信息解答下列問題:

(1)九(1)班的學生人數(shù)為__ , 并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m=10 , n=20 , 表示“足球”的扇形的圓心角是多少度;
(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,∠BAD、∠ADC的平分線AE、DF分別與線段BC相交于點E、F,∠DFC=30°,AEDF相交干點G,則∠AEC=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 ,把不等式組的解集在數(shù)軸上表示出來,并求出不等式組的整數(shù)解的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,半徑為2的⊙P的圓心P的坐標為(-3,0),將⊙P沿x軸正方向平移,使⊙P與y軸相切,則平移的距離為( )

A.1
B.1或5
C.3
D.5

查看答案和解析>>

同步練習冊答案