【題目】小明家客廳里裝有一種三位單極開(kāi)關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,按下任意一個(gè)開(kāi)關(guān)均可打開(kāi)對(duì)應(yīng)的一盞電燈,因剛搬進(jìn)新房不久,不熟悉情況.
(1)若小明任意按下一個(gè)開(kāi)關(guān),則小明打開(kāi)走廊燈的概率是多少?
(2)若任意按下一個(gè)開(kāi)關(guān)后,再按下另兩個(gè)開(kāi)關(guān)中的一個(gè),則正好客廳燈和走廊燈同時(shí)亮的概率是多少?請(qǐng)用樹(shù)狀圖法或列表法加以說(shuō)明.
【答案】(1);(2).
【解析】
(1)直接利用概率公式求解,即可求得答案;
(2)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與正好客廳燈和走廊燈同時(shí)亮的情況,再利用概率公式即可求得答案.
解:(1)小明任意按下一個(gè)開(kāi)關(guān),正好樓梯燈亮的概率是:;,
(2)畫(huà)樹(shù)狀圖得:
∵共有6種等可能的結(jié)果,正好客廳燈和走廊燈同時(shí)亮的有2種情況,
∴正好客廳燈和走廊燈同時(shí)亮的概率是:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的邊BC在x軸上,頂點(diǎn)A在y軸的正半軸上,OA=2,OB=1,OC=4.
(1)求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)M是x軸上的動(dòng)點(diǎn),試問(wèn):在平面直角坐標(biāo)系中,是否存在點(diǎn)N,使得以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,說(shuō)明理由;
(3)若拋物線(xiàn)對(duì)稱(chēng)軸交x軸于點(diǎn)P,在平面直角坐標(biāo)系中,是否存在點(diǎn)Q,使△PAQ是以PA為腰的等腰直角三角形?若存在,寫(xiě)出所有符合條件的點(diǎn)Q的坐標(biāo),選擇一種情況加以說(shuō)明;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,半徑OC⊥AB于點(diǎn)O,點(diǎn)D是的中點(diǎn),連接CD、OD、BD.下列四個(gè)結(jié)論:①AC∥OD;②CD=BD;③△ODE∽△CAE;④∠ADC=∠BOD.其中正確結(jié)論的序號(hào)是( )
A.①②③④B.①②④C.②③D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”被越來(lái)越多的人關(guān)注和喜愛(ài),某興趣小組隨機(jī)調(diào)查了某市名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況并進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整) :請(qǐng)根據(jù)以上信息,解答下列問(wèn)題
寫(xiě)出的值;
補(bǔ)全頻數(shù)分布直方圖;
若該市約有名教師,估計(jì)日行走步數(shù)超過(guò)萬(wàn)步(包含萬(wàn)步)的教師約有多少名?
步數(shù)(萬(wàn)步) | 頻數(shù) | 頻率 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解初中學(xué)生每天在校體育活動(dòng)的時(shí)間(單位:),隨機(jī)調(diào)查了該校的部.分學(xué)生,根據(jù)調(diào)查結(jié)果繪制出如下統(tǒng)計(jì)圖:
(1)求調(diào)查的學(xué)生是多少人? .
(2)求調(diào)查的學(xué)生每天在校體育活動(dòng)時(shí)間的平均數(shù)、眾數(shù);
(3)若該校有名初中學(xué)生,估計(jì)該校每天在校體育活動(dòng)時(shí)間大于的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)上有兩點(diǎn),,連接,,,直線(xiàn)交軸于點(diǎn),點(diǎn)到兩坐標(biāo)軸的距離相等.點(diǎn)到兩坐標(biāo)軸的距離也相等.
(1)求點(diǎn),的坐標(biāo)并直接寫(xiě)出的形狀;
(2)若點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn),重合),連接,當(dāng)為等腰三角形時(shí),求點(diǎn)的坐標(biāo);
(3)若點(diǎn)為軸上一動(dòng)點(diǎn),當(dāng)是以為斜邊的直角三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于點(diǎn),點(diǎn),與y軸交于點(diǎn)C,且過(guò)點(diǎn).點(diǎn)P、Q是拋物線(xiàn)上的動(dòng)點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)當(dāng)點(diǎn)P在直線(xiàn)OD下方時(shí),求面積的最大值.
(3)直線(xiàn)OQ與線(xiàn)段BC相交于點(diǎn)E,當(dāng)與相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,BC=AC=2,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<180°)至△AB'C'的位置.
問(wèn)題探究:
(1)如圖1,當(dāng)旋轉(zhuǎn)角為60°時(shí),連接C'C與AB交于點(diǎn)M,則C'C= , .
(2)如圖2,在(1)條件下,連接BB',延長(zhǎng)CC'交BB'于點(diǎn)D,求CD的長(zhǎng).
問(wèn)題解決:
(3)如圖3,在旋轉(zhuǎn)的過(guò)程中,連線(xiàn)CC'、BB',CC'所在直線(xiàn)交BB'于點(diǎn)D,那么CD的長(zhǎng)有沒(méi)有最大值?如果有,求出CD的最大值:如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A,C 在坐標(biāo)軸上,點(diǎn)B(,),P是射線(xiàn)OB上一點(diǎn),將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得,Q是點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn).
(1)如圖(1)當(dāng)OP = 時(shí),求點(diǎn)Q的坐標(biāo);
(2)如圖(2),設(shè)點(diǎn)P(,)(),的面積為S. 求S與的函數(shù)關(guān)系式,并寫(xiě)出當(dāng)S取最小值時(shí),點(diǎn)P的坐標(biāo);
(3)當(dāng)BP+BQ = 時(shí),求點(diǎn)Q的坐標(biāo)(直接寫(xiě)出結(jié)果即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com