【題目】甲、乙兩超市(大型商場(chǎng))同時(shí)開(kāi)業(yè),為了吸引顧客,都舉行有獎(jiǎng)酬賓活動(dòng):凡購(gòu)物滿100元,均可得到一次摸獎(jiǎng)的機(jī)會(huì).在一個(gè)紙盒里裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,摸獎(jiǎng)?wù)咭淮螐闹忻鰞蓚(gè)球,根據(jù)球的顏色決定送禮金券(在他們超市使用時(shí),與人民幣等值)的多少.(如下表) 甲超市:

兩紅

一紅一白

兩白

禮金券(元)

5

10

5

乙超市:

兩紅

一紅一白

兩白

禮金券(元)

10

5

10


(1)用樹(shù)狀圖表示得到一次摸獎(jiǎng)機(jī)會(huì)時(shí)中禮金券的所有情況;
(2)如果只考慮中獎(jiǎng)因素,你將會(huì)選擇去哪個(gè)超市購(gòu)物?請(qǐng)說(shuō)明理由.

【答案】
(1)解:樹(shù)狀圖為:

∴一共有6種情況


(2)解:方法1:∵去甲超市購(gòu)物摸一次獎(jiǎng)獲10元禮金券的概率是P(甲)=

去乙超市購(gòu)物摸一次獎(jiǎng)獲10元禮金券的概率是P(乙)= ,

∴我選擇去甲超市購(gòu)物;

方法2:∵兩紅的概率P= ,兩白的概率P= ,一紅一白的概率P= = ,

∴在甲商場(chǎng)獲禮金券的平均收益是: ×5+ ×10+ ×5=

在乙商場(chǎng)獲禮金券的平均收益是: ×10+ ×5+ ×10=

∴我選擇到甲商場(chǎng)購(gòu)物.

說(shuō)明:樹(shù)狀圖表示為如下形式且按此求解第(2)問(wèn)的,也正確.


【解析】(1)讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;(2)算出相應(yīng)的平均收益,比較即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形紙片ABCD中,AB=mAD=n,將兩張邊長(zhǎng)分別為64的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長(zhǎng)方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2

1)在圖1中,EF= BF= ;(用含m的式子表示)

2)請(qǐng)用含mn的式子表示圖1,圖2中的s1s2,若m-n=2,請(qǐng)問(wèn)S2-S1的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x單位:小時(shí)進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問(wèn)題:

1補(bǔ)全頻數(shù)分布直方圖

2求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)

3請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了減輕學(xué)生課業(yè)負(fù)擔(dān),提高課堂效果,我縣教體局積極推進(jìn) “高效課堂”建設(shè).

某學(xué)校的《課堂檢測(cè)》印刷任務(wù)原來(lái)由甲復(fù)印店承接,其每月收費(fèi)y(元)與復(fù)印頁(yè)數(shù)x(頁(yè))的函數(shù)關(guān)系如圖所示:

⑴從圖象中可看出:每月復(fù)印超過(guò)500頁(yè)部分每頁(yè)收費(fèi) 元;

現(xiàn)在乙復(fù)印店表示:若學(xué)校先按每月付給200元的月承包費(fèi),則可按每頁(yè)0.15元收費(fèi).乙復(fù)印店每月收費(fèi)y(元)與復(fù)印頁(yè)數(shù)x(頁(yè))的函數(shù)關(guān)系為 ;

在給出的坐標(biāo)系內(nèi)畫出(2)中的函數(shù)圖象,并結(jié)合函數(shù)圖象回答每月復(fù)印在3000頁(yè)左右應(yīng)選擇哪個(gè)復(fù)印店?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四邊形ABCD是平行四邊形,下列結(jié)論錯(cuò)誤的是( )

A. 沿AE所在直線折疊后,△ACE和△ADE重合

B. 沿AD所在直線折疊后,△ADB和△ADE重合

C. A為旋轉(zhuǎn)中心,把△ACE逆時(shí)針旋轉(zhuǎn)90°后與△ADB重合

D. A為旋轉(zhuǎn)中心,把△ACB逆時(shí)針旋轉(zhuǎn)270°后與△DAC重合

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(1,3))、B(3,-1),點(diǎn)Mx軸上,當(dāng)AM-BM最大時(shí),點(diǎn)M的坐標(biāo)為

A. (2,0) B. (2.5,0) C. (4,0), D. (4.5,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1: ,EF⊥CE,求EF:EG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于函數(shù) 的四個(gè)命題:①當(dāng) 時(shí), 有最小值10;② 為任意實(shí)數(shù), 時(shí)的函數(shù)值大于 時(shí)的函數(shù)值;③若 ,且 是整數(shù),當(dāng) 時(shí), 的整數(shù)值有 個(gè);④若函數(shù)圖象過(guò)點(diǎn) ,其中 ,則 .其中真命題的序號(hào)是( )
A.①
B.②
C.③
D.④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:OA⊥OC,∠AOB:∠AOC=2:3,畫出圖形,并求∠BOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案