【題目】如圖,經(jīng)過(guò)原點(diǎn)的拋物線y=﹣x2﹣2mx(m>1)與x軸的另一個(gè)交點(diǎn)為A.過(guò)點(diǎn)P(﹣1,m)作直線PD⊥x軸于點(diǎn)D,交拋物線于點(diǎn)B,BC∥x軸交拋物線于點(diǎn)C.

(1)當(dāng)m=2時(shí).
①求線段BC的長(zhǎng)及直線AB所對(duì)應(yīng)的函數(shù)關(guān)系式;
②若動(dòng)點(diǎn)Q在直線AB上方的拋物線上運(yùn)動(dòng),求點(diǎn)Q在何處時(shí),△QAB的面積最大?
③若點(diǎn)F在坐標(biāo)軸上,且PF=PC,請(qǐng)直接寫(xiě)出符合條件的點(diǎn)F在坐標(biāo);
(2)當(dāng)m>1時(shí),連接CA、CP,問(wèn)m為何值時(shí),CA⊥CP?

【答案】
(1)

解:①當(dāng)m=2時(shí),y=﹣x2﹣4x,

令y=0,得﹣x2﹣4x=0,

解得x1=0,x2=﹣4,

則A(﹣4,0).

當(dāng)x=﹣1時(shí),y=3,

則B(﹣1,3).

∵拋物線y=﹣x2﹣4x的對(duì)稱(chēng)軸為直線x=﹣2,

∴B、C兩點(diǎn)關(guān)于對(duì)稱(chēng)軸x=﹣2對(duì)稱(chēng),

∴C(﹣3,3),BC=2.

設(shè)直線AB所對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b.

∵A(﹣4,0)、B(﹣1,3)在直線AB上,

解得

∴直線AB所對(duì)應(yīng)的函數(shù)關(guān)系式為y=x+4;

②過(guò)點(diǎn)Q作QE∥y軸,交AB于點(diǎn)E(如圖1).

由題意可設(shè)Q(a,﹣a2﹣4a),則E(a,a+4),

∴QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4.

∴SQAB= QEAD

= ×(﹣a2﹣5a﹣4)×3

=﹣ (a+ 2+ ,

∴當(dāng)a= 時(shí),△QAB的面積最大,此時(shí)Q的坐標(biāo)為( , );

③分兩種情況:

若點(diǎn)F在x軸上,設(shè)F(x,0).

∵PF=PC,P(﹣1,2),C(﹣3,3),

∴(x+1)2+(2﹣0)2=(﹣3+1)2+(3﹣2)2,

整理,得x2+2x=0,

解得x1=﹣2,x2=0,

∴F1(﹣2,0),F(xiàn)2(0,0);

若點(diǎn)F在y軸上,設(shè)F(0,y).

∵PF=PC,P(﹣1,2),C(﹣3,3),

∴(0+1)2+(y﹣2)2=(﹣3+1)2+(3﹣2)2,

整理,得y2﹣4y=0,

解得y1=4,y2=0,

∴F3(0,4),F(xiàn)4(0,0)與F2(0,0)重合;

綜上所述,符合條件的點(diǎn)F坐標(biāo)為F1(﹣2,0),F(xiàn)2(0,0),F(xiàn)3(0,4)


(2)

解:過(guò)點(diǎn)C作CH⊥x軸于點(diǎn)H(如圖2).

∵P(﹣1,m),B(﹣1,2m﹣1),

∴PB=m﹣1.

∵拋物線y=﹣x2﹣2mx的對(duì)稱(chēng)軸為直線x=﹣m,其中m>1,

∴B、C兩點(diǎn)關(guān)于對(duì)稱(chēng)軸x=﹣m對(duì)稱(chēng),

∴BC=2(m﹣1),

∴C(1﹣2m,2m﹣1),H(1﹣2m,0),

∴CH=2m﹣1,

∵A(﹣2m,0),

∴AH=1.

由已知,得∠ACP=∠BCH=90°,

∴∠ACH=∠PCB.

又∵∠AHC=∠PBC=90°,

∴△ACH∽△PCB,

,即 ,

∴m=


【解析】(1)①將m=2代入y=﹣x2﹣2mx,得出y=﹣x2﹣4x,求出A(﹣4,0),B(﹣1,3),由B、C兩點(diǎn)關(guān)于拋物線y=﹣x2﹣4x的對(duì)稱(chēng)軸x=﹣2對(duì)稱(chēng),得出BC=2,運(yùn)用待定系數(shù)法求出直線AB所對(duì)應(yīng)的函數(shù)關(guān)系式;②過(guò)點(diǎn)Q作QE∥y軸,交AB于點(diǎn)E,設(shè)Q(a,﹣a2﹣4a),則E(a,a+4),QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4,由SQAB= QEAD求出SQAB=﹣ (a+ 2+ ,根據(jù)二次函數(shù)的性質(zhì)即可求解;③分兩種情況進(jìn)行討論:若點(diǎn)F在x軸上,設(shè)F(x,0).根據(jù)PF=PC列出方程,解方程得到F1(﹣2,0),F(xiàn)2(0,0);若點(diǎn)F在y軸上,設(shè)F(0,y),根據(jù)PF=PC列出方程,解方程得到F3(0,4),F(xiàn)4(0,0)與F2(0,0)重合;(2)過(guò)點(diǎn)C作CH⊥x軸于點(diǎn)H.先求出PB=m﹣1,BC=2(m﹣1),CH=2m﹣1,AH=1,再證明△ACH∽△PCB,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出 ,即 ,解方程可求出m的值.
【考點(diǎn)精析】掌握二次函數(shù)的圖象和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家到圖書(shū)館看報(bào)然后返回,他離家的距離y與離家的時(shí)間x之間的對(duì)應(yīng)關(guān)系如圖所示,如果小明在圖書(shū)館看報(bào)30分鐘,那么他離家50分鐘時(shí)離家的距離為 km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿(mǎn)足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫(xiě)出中點(diǎn)四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列條件中,不能證明△ABD≌△ACD的是( 。

A. AB=AC,BD=CD B. ∠B=∠C,BD=CD

C. ∠B=∠C,∠BAD=∠CAD D. ∠ADB=∠ADC,DB=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D雙曲線上,AD垂直x軸,垂足為A,點(diǎn)C在AD上,CB平行于x軸交曲線于點(diǎn)B,直線AB與y軸交于點(diǎn)F,已知AC:AD=1:3,點(diǎn)C的坐標(biāo)為(2,2).

(1)求該雙曲線的解析式;
(2)求△OFA的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測(cè)試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少要招錄多少名男學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A為頂點(diǎn)的等腰ABC中,∠ABC、∠ACB的平分線相交于點(diǎn)D,過(guò)點(diǎn)D作EFBC分別交AB、AC于E、F.

(1)求證:BE=DE;

(2)若ABC的周長(zhǎng)比AEF的周長(zhǎng)大10,試求出BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為提高學(xué)生身體素質(zhì),決定開(kāi)展足球、籃球、臺(tái)球、乒乓球四項(xiàng)課外體育活動(dòng),并要求學(xué)生必須并且只能選擇一項(xiàng).為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制出以下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題.(要求寫(xiě)出簡(jiǎn)要的解答過(guò)程)

(1)這次活動(dòng)一共調(diào)查了多少名學(xué)生?

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若該學(xué)??cè)藬?shù)是1300人,請(qǐng)估計(jì)選擇籃球項(xiàng)目的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】潛山市某村辦工廠,今年前5個(gè)月生產(chǎn)某種產(chǎn)品的總量C(件)關(guān)于時(shí)間t(月)的函數(shù)圖象如圖所示,則該廠對(duì)這種產(chǎn)品來(lái)說(shuō)( 

A. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月每月生產(chǎn)總量逐月減少

B. 1月至3月每月生產(chǎn)總量逐月增加,4,5兩月每月生產(chǎn)量與3月持平

C. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月均停止生產(chǎn)

D. 1月至3月每月生產(chǎn)總量不變,4、5兩月均停止生產(chǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案