如圖,AB是⊙O直徑,且AB=4cm,弦CD⊥AB,∠COB=45°,則CD為    cm.
【答案】分析:根據(jù)已知條件求得圓的半徑OC=2;然后由垂徑定理知CE=CD;再在直角三角形OEC中利用勾股定理求得CE的值.
解答:解:∵AB是⊙O直徑,AB=4cm,
∴OC=AB=2(半徑是直徑的一半);
∵AB是⊙O直徑,CD⊥AB,
∴CE=CD(垂徑定理);
又∵∠COB=45°,
∴∠OCB=45°,
∴∠COB=∠OCB=45°,
∴OE=CE(等角對(duì)等邊);
在直角三角形OCE中,OC2=OE2+CE2
∴CE==,
∴CD=2
故答案為:2
點(diǎn)評(píng):本題考查了垂徑定理和勾股定理.解此類題目要注意將圓的問題轉(zhuǎn)化成三角形的問題再進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O直徑,D為⊙O上一點(diǎn),AT平分∠BAD交⊙O于點(diǎn)T,過T作AD的垂線交AD的延長線于點(diǎn)C.
(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2,CT=
3
,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O直徑,BC是弦,OD⊥BC于E交弧BC于D.根據(jù)中考改編
(1)請(qǐng)寫出四個(gè)不同類型的正確結(jié)論;
(2)連接CD、DB設(shè)∠CDB=α,∠ABC=β,你認(rèn)為α=β+90°這個(gè)結(jié)論正確嗎?若正確請(qǐng)證明過程.若不正確請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O直徑,C、D是⊙O上的兩點(diǎn),若∠BAC=20°,
AD
=
DC
,則∠DAC的度數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O直徑,OB=6,弦CD=10,則弦心距OP的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O直徑,弦CD交AB于E,∠AEC=45°,AB=2.設(shè)AE=x,CE2+DE2=y.下列圖象中,能表示y與x的函數(shù)關(guān)系是的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案