小明投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷(xiāo)售過(guò)程中銷(xiāo)售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%.
(1)設(shè)小明每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?
(3)如果小明想要每月獲得的利潤(rùn)不低于2000元,那么小明每月的成本最少需要多少元?
(成本=進(jìn)價(jià)×銷(xiāo)售量)
(1);(2)當(dāng)銷(xiāo)售單價(jià)定為32元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)是2160元;(3)3600.

試題分析:(1)由題意得,每月銷(xiāo)售量與銷(xiāo)售單價(jià)之間的關(guān)系可近似看作一次函數(shù),利潤(rùn)=(定價(jià)-進(jìn)價(jià))×銷(xiāo)售量,從而列出關(guān)系式;
(2)首先確定二次函數(shù)的對(duì)稱(chēng)軸,然后根據(jù)其增減性確定最大利潤(rùn)即可;
(3)根據(jù)拋物線(xiàn)的性質(zhì)和圖象,求出每月的成本.
試題解析:(1)由題意,得:
.
(2)函數(shù)的圖象的對(duì)稱(chēng)軸是直線(xiàn),
又∵a=-10<0,拋物線(xiàn)開(kāi)口向下.∴當(dāng)20≤x≤32時(shí),w隨著x的增大而增大。
∴當(dāng)x=32時(shí),w=2160.
答:當(dāng)銷(xiāo)售單價(jià)定為32元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)是2160元.
(3)取w=2000得,,解這個(gè)方程得:x1=30,x2=40。
∵a=-10<0,拋物線(xiàn)開(kāi)口向下.
∴當(dāng)30≤x≤40時(shí),w≥2000.
∵20≤x≤32,∴當(dāng)30≤x≤32時(shí),w≥2000.
設(shè)每月的成本為P(元),由題意,得
∵k=-200<0,∴P隨x的增大而減。
∴當(dāng)x=32時(shí),P的值最小,P最小值=3600.
答:想要每月獲得的利潤(rùn)不低于2000元,小明每月的成本最少為3600元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)購(gòu)進(jìn)一種單價(jià)為40元的籃球,如果以單價(jià)50元售出,那么每月可售出500個(gè),根據(jù)銷(xiāo)售經(jīng)驗(yàn),銷(xiāo)售單價(jià)每提高1元,銷(xiāo)售量相應(yīng)減少10個(gè).
(1)設(shè)銷(xiāo)售單價(jià)提高x元(x為正整數(shù)),寫(xiě)出每月銷(xiāo)售量y(個(gè))與x(元)之間的函數(shù)關(guān)系式;
(2)假設(shè)這種籃球每月的銷(xiāo)售利潤(rùn)為w元,試寫(xiě)出w與x之間的函數(shù)關(guān)系式,并通過(guò)配方討論,當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月銷(xiāo)售這種籃球的利潤(rùn)最大,最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

沙坪壩火車(chē)站將改造成一個(gè)集高鐵、輕軌、公交、停車(chē)場(chǎng)、商業(yè)于一體的地下七層建筑,地面上欲建造一個(gè)圓形噴水池,如圖,點(diǎn)表示噴水池的水面中心,表示噴水柱子,水流從點(diǎn)噴出,按如圖所示的直角坐標(biāo)系,每一股水流在空中的路線(xiàn)可以用來(lái)描述,那么水池的半徑至少要          米,才能使噴出的水流不致落到池外。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線(xiàn)y=2(x+1)(x-3)的對(duì)稱(chēng)軸是(     )
A.直線(xiàn)x=-1B.直線(xiàn)x="1" C.直線(xiàn)x=2D.直線(xiàn)x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)(a≠0)的對(duì)稱(chēng)軸是直線(xiàn)l,頂點(diǎn)為點(diǎn)M.若自變量x和函數(shù)值y1的部分對(duì)應(yīng)值如下表所示:
x

―1
0
3



0

0

(1)求y1與x之間的函數(shù)關(guān)系式;
(2)若經(jīng)過(guò)點(diǎn)T(0,t)作垂直于y軸的直線(xiàn)l′,A為直線(xiàn)l′上的動(dòng)點(diǎn),線(xiàn)段AM的垂直平分線(xiàn)交直線(xiàn)l于點(diǎn)B,點(diǎn)B關(guān)于直線(xiàn)AM的對(duì)稱(chēng)點(diǎn)為P,記P(x,y2).
①求y2與x之間的函數(shù)關(guān)系式;
②當(dāng)x取任意實(shí)數(shù)時(shí),若對(duì)于同一個(gè)x,有y1<y2恒成立,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)過(guò)兩點(diǎn)(m,0)、(n,0),且,拋物線(xiàn)于雙曲線(xiàn)(x>0)的交點(diǎn)為(1,d).
(1)求拋物線(xiàn)與雙曲線(xiàn)的解析式;
(2)已知點(diǎn)都在雙曲線(xiàn)(x>0)上,它們的橫坐標(biāo)分別為,O為坐標(biāo)原點(diǎn),記,點(diǎn)Q在雙曲線(xiàn)(x<0)上,過(guò)Q作QM⊥y軸于M,記。
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一坐標(biāo)系內(nèi),一次函數(shù)y=ax+b與二次函數(shù)y=ax2+8x+b的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的圖像如圖所示,反比列函數(shù)與正比列函數(shù)在同一坐標(biāo)系內(nèi)的大致圖像是(      )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

當(dāng)二次函數(shù)取最小值時(shí),的值為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案