【題目】已知等腰三角形ABC的底邊長(zhǎng)BC=20cm,D是AC上的一點(diǎn),且BD=16cm,CD=12cm.
(1)求證:BD⊥AC;
(2)求△ABC的面積.
【答案】
(1)證明:∵122+162=202,
∴CD2+BD2=BC2,
∴△BDC是直角三角形,
∴BD⊥AC
(2)解:設(shè)AD=xcm,則AC=(x+12 )cm,
∵AB=AC,
∴AB═(x+12 )cm,
在Rt△ABD中:AB2=AD2+BD2,
∴(x+12)2=162+x2,
解得x= ,
∴AC= +12= cm,
∴△ABC的面積S= BDAC= ×16× = cm2
【解析】(1)首先根據(jù)BD、CD、BC長(zhǎng)可利用勾股定理逆定理證明BD⊥AC;(2)設(shè)AD=xcm,則AC=(x+12 )cm,在Rt△ABD中,利用勾股定理列出方程求解即可得到AB,進(jìn)一步得到AC,再利用AC和AC邊上的高列式計(jì)算即可得解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和勾股定理的概念的相關(guān)知識(shí)可以得到問題的答案,需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),到點(diǎn)C,D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( 。
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,最適合采用全面調(diào)查的是( )
A. 調(diào)查一批汽車的使用壽命 B. 調(diào)查春節(jié)聯(lián)歡晚會(huì)的收視率
C. 調(diào)查某航班的旅客是否攜帶違禁物品 D. 調(diào)查全國(guó)七年級(jí)學(xué)生的視力情況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中B(3,2),BC⊥y軸于C,BA⊥x軸于A,點(diǎn)E在線段AB上從B向A以每秒1個(gè)單位的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0<t<2).將BE沿BD折疊,使E點(diǎn)恰好落在BC上的F處.
(1)如圖1,若E為AB的中點(diǎn),請(qǐng)直接寫出F、D兩點(diǎn)的坐標(biāo):F( , ) D( , )
(2)如圖1,連接CD,在(1)的條件下,求證:CD=FD.
(3)如圖2,在E點(diǎn)運(yùn)動(dòng)的同時(shí),M點(diǎn)在OC上從C向O運(yùn)動(dòng),N點(diǎn)在OA上從A向O運(yùn)動(dòng),M的運(yùn)動(dòng)速度為每秒3個(gè)單位,N的運(yùn)動(dòng)速度為每秒a個(gè)單位.在運(yùn)動(dòng)過程中,△CMF能與△ANE全等嗎?若能,求出此時(shí)a與t的值,若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,E是AB邊上的一點(diǎn),且AE=6,點(diǎn)Q為對(duì)角線AC上的動(dòng)點(diǎn),則△BEQ周長(zhǎng)的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形具有而菱形不一定具有性質(zhì)的是( )
A. 對(duì)角線互相平分 B. 對(duì)角線相等
C. 對(duì)角線平分一組對(duì)角 D. 對(duì)角線互相垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=∠C=90°,BE、DF分別是∠ABC、∠ADC的平分線.求證:
(1)∠1+∠2=90°;
(2)BE∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點(diǎn)E、F分別為長(zhǎng)方形紙帶ABCD的邊AD、BC上的點(diǎn),∠DEF=19°,將紙帶沿EF折疊成圖②(G為ED和EF的交點(diǎn),再沿BF折疊成圖③(H為EF和DG的交點(diǎn)),則圖③中∠DHF=°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com