【題目】如圖1,在平面直角坐標(biāo)系中,,,且.
(1)求點(diǎn)A、B的坐標(biāo);
(2)如圖1,P點(diǎn)為y軸正半軸上一點(diǎn),連接BP,若,請求出P點(diǎn)的坐標(biāo);
(3)如圖2,已知,若C點(diǎn)是x軸上一個動點(diǎn),是否存在點(diǎn)C,使,若存在,請直接寫出所有符合條件的點(diǎn)C的坐標(biāo);若不存在,請說明理由.
【答案】(1),;(2);(3)存在,,,理由見解析
【解析】
(1)首先根據(jù)等式,可得出和的值,即可得出點(diǎn)A、B的坐標(biāo);
(2)首先作軸于點(diǎn)M,設(shè),且,利用,列出等式,即可得出點(diǎn)P的坐標(biāo);
(3)根據(jù)題意,利用等腰三角形的性質(zhì),即可直接判定C的坐標(biāo),有兩種情況,在x正半軸和負(fù)半軸上,即可得解.
解:(1),
∴,
∴,
(2)作軸于點(diǎn)M,如圖所示
設(shè),且
∴
若
即
∴
∴
(3)存在,,
∵,,
∴當(dāng)C點(diǎn)在x正半軸上時,坐標(biāo)為,
當(dāng)C點(diǎn)在x負(fù)半軸上時,坐標(biāo)為
故答案為,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖,圖象過點(diǎn),對稱軸為直線,下列結(jié)論:①;②;③;④當(dāng)時, 的值隨值的增大而增大;⑤當(dāng)函數(shù)值時,自變量的取值范圍是或.其中正確的結(jié)論有__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個工程隊共同參與一項(xiàng)筑路工程,甲隊單獨(dú)施工3個月,這時增加了乙隊,兩隊又共同工作了2個月,總工程全部完成,已知甲隊單獨(dú)完成全部工程比乙隊單獨(dú)完成全部工程多用2個月,設(shè)甲隊單獨(dú)完成全部工程需個月,則根據(jù)題意可列方程中錯誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶市有五個景區(qū)很受游客喜愛,一旅行社對某小區(qū)居民在暑假期間去以上五個景區(qū)旅游(只選一個景區(qū))的意向做了一次隨機(jī)調(diào)查統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了如下兩幅不完整的統(tǒng)計圖.
該小區(qū)居民在這次隨機(jī)調(diào)查中被調(diào)查到的人數(shù)是_______人, 想去景區(qū)的人有_________人, 并補(bǔ)全條形統(tǒng)計圖.
被調(diào)查到的居民想去 景區(qū)旅游的人數(shù)最多,若該小區(qū)有居民人,估計去該景區(qū)旅游的居民約有多少人?
小強(qiáng)同學(xué)贊假期間計劃與父母從五個景區(qū)中,任選兩個去旅游,求選至兩個景區(qū)的概率,(要求列表求概率)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點(diǎn)H,AC的延長線與過點(diǎn)B的直線相交于點(diǎn)E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點(diǎn)F、G,若BGBA=48,F(xiàn)G=,DF=2BF,求AH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,OE⊥BD交BC于點(diǎn)E,CD=1,則CE的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),矩形OACB的頂點(diǎn)A、B分別在軸和軸上,已知OA=5,OB=3,點(diǎn)D的坐標(biāo)是(0,1),點(diǎn)P從點(diǎn)B出發(fā)以每秒1個單位的速度沿折線BCA的方向運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)A重合時,運(yùn)動停止,設(shè)運(yùn)動的時間為秒.
(1)點(diǎn)P運(yùn)動到與點(diǎn)C重合時,求直線DP的函數(shù)解析式;
(2)求△OPD的面積S關(guān)于的函數(shù)解析式,并寫出對應(yīng)的取值范圍;
(3)點(diǎn)P在運(yùn)動過程中,是否存在某些位置使△ADP是不以DP為底邊的等腰三角形,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,△ABC為等腰直角三角形,∠ACB=90°,F是AC邊上的一個動點(diǎn)(點(diǎn)F與A,C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF,AD.
探究展示:(1)①猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;
②將圖1中的正方形CDEF,繞著點(diǎn)C按順時針方向旋轉(zhuǎn)任意角度α,得到如圖2的情形,圖2中BF交AC于點(diǎn)H,交AD于點(diǎn)O,請你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
變式練習(xí):(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,如圖3,且AC=4,BC=3,CD=,CF=1,BF交AC于點(diǎn)H,交AD于點(diǎn)O,連接BD、AF,請判斷線段BF、AD所在直線的位置關(guān)系,并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠BDC,∠2+∠3=180°.
(1) 請你判斷DA與CE的位置關(guān)系,并說明理由;
(2) 若DA平分∠BDC,CE⊥AE于點(diǎn)E,∠1=70°,試求∠FAB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com