已知:在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AC=,AB=6.
求:(1)tan∠A的值;
(2)sin∠ACD+sin∠BCD的值.

【答案】分析:(1)在直角三角形中,利用勾股定理求得直角邊BC=2,然后利用直角三角形中的銳角三角函數(shù)的定義求得tan∠A的值;
(2)利用等角的余角相等求得∠A=∠BCD,∠B=∠ACD,所以問題就轉(zhuǎn)為在直角三角形ABC中,求sin∠A+sin∠B的值;然后根據(jù)直角三角形中的銳角三角函數(shù)的定義求sin∠A+sin∠B的值即可.
解答:解:(1)在Rt△ABC中,∠ACB=90°,AC=,AB=6,
∴根據(jù)勾股定理,得
BC===2,
∴tan∠A===,即tan∠A=

(2)∵CD⊥AB,
∴∠A+∠ACD=∠BCD+∠ACD,
∴∠A=∠BCD;
同理的,得
∠B=∠ACD,
∴sin∠ACD+sin∠BCD=sin∠A+sin∠B=+=+=,即sin∠ACD+sin∠BCD=
點(diǎn)評(píng):本題考查了解直角三角形.熟練掌握好邊角之間、邊與邊之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是邊AB的中點(diǎn),E、G分別是邊AC、BC上的一點(diǎn),∠EMG=45°,AC與MG的延長(zhǎng)線相交于點(diǎn)F.
(1)在不添加字母和線段的情況下寫出圖中一定相似的三角形,并證明其中的一對(duì);
(2)連接結(jié)EG,當(dāng)AE=3時(shí),求EG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在Rt△ABC中,∠C=90°,∠A=30°,b=2
3
,解這個(gè)直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D為AC上一點(diǎn)(不與A、C不精英家教網(wǎng)重合),過D作DQ⊥AC(DQ與AB在AC的同側(cè));點(diǎn)P從D點(diǎn)出發(fā),在射線DQ上運(yùn)動(dòng),連接PA、PC.
(1)當(dāng)PA=PC時(shí),求出AD的長(zhǎng);
(2)當(dāng)△PAC構(gòu)成等腰直角三角形時(shí),求出AD、DP的長(zhǎng);
(3)當(dāng)△PAC構(gòu)成等邊三角形時(shí),求出AD、DP的長(zhǎng);
(4)在運(yùn)動(dòng)變化過程中,△CAP與△ABC能否相似?若△CAP與△ABC相似,求出此時(shí)AD與DP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中點(diǎn),連接BM,CF⊥MB,F(xiàn)是垂足,延長(zhǎng)CF交AB于點(diǎn)E.求證:∠AME=∠CMB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長(zhǎng)為半徑的圓與AC、AB分別交于點(diǎn)D、E,且∠CBD=∠A.
(1)觀察圖形,猜想BD與⊙O的位置關(guān)系:
相切
相切
;
(2)證明第(1)題的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案