【題目】已知:如圖,∠PAQ=30°,在邊AP上順次截取AB=3cm,BC=10cm,以BC為直徑作⊙O交射線AQ于E、F兩點,求:
(1)圓心O到AQ的距離;
(2)線段EF的長.
【答案】(1)即圓心O到AQ的距離為4cm;(2)EF=6cm.
【解析】
試題
(1)過點O作OH⊥EF,垂足為點H,求出AO,根據(jù)含30度角的直角三角形性質(zhì)求出即可;
(2)連接OE,根據(jù)勾股定理求出EH,根據(jù)垂徑定理得出即可.
試題解析:
(1)過點O作OH⊥EF,垂足為點H,
∵OH⊥EF,
∴∠AHO=90°,
在Rt△AOH中,∵∠AHO=90°,∠PAQ=30°,
∴OH=AO,
∵BC=10cm,
∴BO=5cm.
∵AO=AB+BO,AB=3cm,
∴AO=3+5=8cm,
∴OH=4cm,即圓心O到AQ的距離為4cm.
(2)連接OE,
在Rt△EOH中,
∵∠EHO=90°,∴EH2+HO2=EO2,
∵EO=5cm,OH=4cm,
∴EH==3cm,
∵OH過圓心O,OH⊥EF,
∴EF=2EH=6cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過點A(﹣1,0)、B(3,0),且與y軸交于點C,拋物線的對稱軸與x軸交于點D.
(1)求拋物線的解析式;
(2)點P是y軸正半軸上的一個動點,連結(jié)DP,將線段DP繞著點D順時針旋轉(zhuǎn)90°得到線段DE,點P的對應(yīng)點E恰好落在拋物線上,求出此時點P的坐標;
(3)點M(m,n)是拋物線上的一個動點,連接MD,把MD2表示成自變量n的函數(shù),并求出MD2取得最小值時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在航線l的兩側(cè)分別有觀測點A和B,點B到航線l的距離BD為4km,點A位于點B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點A南偏東74°方向的C處,沿該航線自東向西航行至觀測點A的正南方向E處.求這艘輪船的航行路程CE的長度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標平面內(nèi),直線y=-x+5與軸和軸分別交于A、B兩點,二次函數(shù)y=+bx+c的圖象經(jīng)過點A、B,且頂點為C.
(1)求這個二次函數(shù)的解析式;
(2)求sin∠OCA的值;
(3)若P是這個二次函數(shù)圖象上位于x軸下方的一點,且ABP的面積為10,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸相交于兩點A(1,0),B(-3,0),與y軸相交于點C(0,3).
(1)求此拋物線的函數(shù)表達式;
(2)如果點是拋物線上的一點,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F為拋物線上一點,以A、E、F為頂點的三角形面積為3,求點F的坐標;
(3)點P從點D出發(fā),沿對稱軸向下以每秒1個單位長度的速度勻速運動,設(shè)運動的時間為t秒,當(dāng)t為何值時,以P、B、C為頂點的三角形是直角三角形?直接寫出所有符合條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂場一轉(zhuǎn)角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點E在線段BD上,在C點測得點A的仰角為30°,點E的俯角也為30°,測得B、E間距離為10米,立柱AB高30米.求立柱CD的高(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子里裝有編號分別為1、2、3的球(除編號以為,其余都相同),其中1號球1個,3號球3個,從中隨機摸出一個球是2號球的概率為.
(1)求袋子里2號球的個數(shù).
(2)甲、乙兩人分別從袋中摸出一個球(不放回),甲摸出球的編號記為x,乙摸出球的編號記為y,用列表法求點A(x,y)在直線y=x下方的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)在研究函數(shù)y=x2+bx+c(b,c是常數(shù))時,甲發(fā)現(xiàn)當(dāng)x=1時,函數(shù)有最小值;乙發(fā)現(xiàn)﹣1是方程x2+bx+c=0的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當(dāng)x=2時,y=4,已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯誤的,則該同學(xué)是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com