【題目】某游樂場一轉(zhuǎn)角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點E在線段BD上,在C點測得點A的仰角為30°,點E的俯角也為30°,測得B、E間距離為10米,立柱AB30米.求立柱CD的高(結(jié)果保留根號)

【答案】立柱CD的高為(15﹣)米.

【解析】CHABH,得到 BD=CH,設CD=x米,根據(jù)正切的定義分別用x表示出HC、ED,根據(jù)正切的定義列出方程,解方程即可.

CHABH,

則四邊形HBDC為矩形,

BD=CH,

由題意得,∠ACH=30°,CED=30°,

CD=x米,則AH=(30-x)米,

RtAHC中,HC=,

BD=CH=(30-x),

ED=(30-x)-10,

RtCDE中,=tanCED,即,

解得,x=15-,

答:立柱CD的高為(15-)米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)的△BEC為正三角形,求∠DEA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題共10分水果批發(fā)市場有一種高檔水果,如果每千克盈利毛利潤10元,每天可售出500千克經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷量將減少20千克

1若以每千克能盈利18元的單價出售,問每天的總毛利潤為多少元?

2現(xiàn)市場要保證每天總毛利潤6000元,同時又要使顧客得到實惠,則每千克應漲價多少元?

3現(xiàn)需按毛利潤的10%交納各種稅費,人工費每日按銷售量每千克支出09元,水電房租費每日102元,若剩下的每天總純利潤要達到5100元,則每千克漲價應為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+2x軸、y軸分別交于A、B兩點,以A B為邊在第二象限內(nèi)作正方形ABCD

1)求點A、B的坐標,并求邊AB的長;

2)求點D的坐標;

3)在x軸上找一點M,使MDB的周長最小,請求出M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為 60°,然后在坡頂D測得樹頂B的仰角為300,已知斜坡CD的長度為20m,DE的長為10m,則樹AB的高度是( ) m

A. B. 30 C. D. 40

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是( )

A.四邊形AEDF是平行四邊形

B.若∠BAC=90°,則四邊形AEDF是矩形

C.若AD平分∠BAC,則四邊形AEDF是矩形

D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請將下列事件發(fā)生的概率標在圖1中(用字母表示):

1)記為點A:隨意擲兩枚質(zhì)地均勻的骰子,朝上面的點數(shù)之和為1;

2)記為點B:拋出的籃球會下落;

3)記為點C:從裝有3個紅球、7個白球的口袋中任取一個球,恰好是白球(這些球除顏色外完全相同);

4)記為點D:如圖2所示的正方形紙片上做隨機扎針實驗,則針頭恰好扎在陰影區(qū)域內(nèi).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,過點BBEAD于點E,過點EEFAB于點F,與CD的延長線交于點G,連接BG,且BEBC,BG5,∠BGF45°,EG3,若點M是線段BF上的一個動點,將MEF沿ME所在直線翻折得到MEF,連接CF,則CF長度的最小值是_____

查看答案和解析>>

同步練習冊答案