關(guān)于x的二次函數(shù)y=a(x+1)(x-m),其圖象的對稱軸在y軸的右側(cè),則實數(shù)a、m應(yīng)滿足( 。
A.a(chǎn)>0,m<-1B.a(chǎn)>0,m>1C.a(chǎn)≠0,0<m<1D.a(chǎn)≠0,m>1
∵a(x+1)(x-m)=0,則x=-1或x=m,且a≠0,
∴二次函數(shù)y=a(x+1)(x-m)的圖象與x軸的交點為(-1,0)、(m,0),
∴二次函數(shù)的對稱軸x=
-1+m
2
,
∵函數(shù)圖象的對稱軸在y軸的右側(cè),
-1+m
2
>0,
解得:m>1,
故選:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=
1
2
x2-2x+
3
2
與x軸交于點A(x1,0),B(x2,0),則AB的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知直線l:y=-x+2與y軸交于點A,拋物線y=(x-1)2+k經(jīng)過點A,其頂點為B,另一拋物線y=(x-h)2+2-h(h>1)的頂點為D,兩拋物線相交于點C.
(1)求點B的坐標(biāo),并說明點D在直線l上的理由;
(2)設(shè)交點C的橫坐標(biāo)為m.
①交點C的縱坐標(biāo)可以表示為:______或______,由此進(jìn)一步探究m關(guān)于h的函數(shù)關(guān)系式;
②如圖2,若∠ACD=90°,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(2,4),其頂點的橫坐標(biāo)是
1
2
,它的圖象與x軸交點為B(x1,0)和(x2,0),且x12+x22=13.求:
(1)此函數(shù)的解析式,并畫出圖象;
(2)在x軸上方的圖象上是否存在著D,使S△ABC=2S△DBC?若存在,求出D的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點A(x1,0)、B(x2,0),點A在點B的左側(cè).當(dāng)x=x2-2時,y______0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知二次函數(shù)y=ax2+bx+c的部分圖象,由圖象可知關(guān)于x的一元二次方程ax2+bx+c=0的兩個根分別是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個根______;
(2)寫出不等式ax2+bx+c>0的解集______;
(3)寫出y隨x的增大而減小的自變量x的取值范圍______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=-x2+2x+k的部分圖象如圖所示,則關(guān)于x的一元二次方程-x2+2x+k=0的一個解x1=3,另一個解x2=( 。
A.1B.-1C.-2D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與X軸的交點的橫坐標(biāo)為-1和3,給出下列說法:(1)abc<0;(2)方程ax2+bx+c=0的根為x1=-1,x2=3;(3)4a+2b+c>0;(4)8a+c<0;其中正確的結(jié)論的個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案