【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 , 為什么?
【答案】
(1)解:設(shè)所圍矩形ABCD的長(zhǎng)AB為x米,則寬AD為 (80﹣x)米
依題意,得x (80﹣x)=750
即,x2﹣80x+1500=0,
解此方程,得x1=30,x2=50
∵墻的長(zhǎng)度不超過(guò)45m,∴x2=50不合題意,應(yīng)舍去
當(dāng)x=30時(shí), (80﹣x)= ×(80﹣30)=25,
所以,當(dāng)所圍矩形的長(zhǎng)為30m、寬為25m時(shí),能使矩形的面積為750m2
(2)解:不能.
因?yàn)橛蓌 (80﹣x)=810得x2﹣80x+1620=0
又∵b2﹣4ac=(﹣80)2﹣4×1×1620=﹣80<0,
∴上述方程沒(méi)有實(shí)數(shù)根
因此,不能使所圍矩形場(chǎng)地的面積為810m2
【解析】(1)設(shè)所圍矩形ABCD的長(zhǎng)AB為x米,則寬AD為 (80﹣x)米,根據(jù)矩形面積的計(jì)算方法列出方程求解.(2)假使矩形面積為810,則x無(wú)實(shí)數(shù)根,所以不能圍成矩形場(chǎng)地.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從邊長(zhǎng)為a的正方形中剪掉一個(gè)邊長(zhǎng)為b的正方形(如圖1),然后將剩余部分拼成一個(gè)長(zhǎng)方形(如圖2).
(1)上述操作能驗(yàn)證的等式是 ;(請(qǐng)選擇正確的一個(gè))
A、a2﹣2ab+b2=(a﹣b)2 B、a2﹣b2=(a+b)(a﹣b) C、a2+ab=a(a+b)
(2)應(yīng)用你從(1)選出的等式,完成下題:
計(jì)算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某校有一長(zhǎng)方形操場(chǎng),長(zhǎng)為x m,寬為y m,為了美化校園環(huán)境,學(xué)校決定在操場(chǎng)四周修建m m寬的綠化帶,負(fù)責(zé)后勤的王老師讓八年級(jí)某班學(xué)生計(jì)算一下剩下操場(chǎng)的面積,可是該班學(xué)生計(jì)算出了兩種結(jié)果:一種是(xy-2mx-2my)m2,另一種是(xy-2mx-2my+4m2)m2,并且為此爭(zhēng)論不休,作為一名八年級(jí)學(xué)生,你能運(yùn)用所學(xué)的知識(shí)來(lái)幫助他們判斷對(duì)錯(cuò)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B、D、E在⊙O上,弦AE、BD的延長(zhǎng)線相交于點(diǎn)C.若AB是⊙O的直徑,D是BC的中點(diǎn).
(1)試判斷AB、AC之間的大小關(guān)系,并給出證明;
(2)在上述題設(shè)條件下,當(dāng)△ABC為正三角形時(shí),點(diǎn)E是否AC的中點(diǎn)?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BD是AC邊上的高,CE是AB邊上的高,BD與CE相交于點(diǎn)O,則∠ABD___∠ACE(填“>”“<”或“=”),∠A+∠DOE=___度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖①,若AB∥CD,點(diǎn)P在AB,CD外部,則有 ∠B=∠BOD,又因?yàn)椤螧OD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.將點(diǎn)P移到AB,CD內(nèi)部,如圖②,以上結(jié)論是否成立?若成立,請(qǐng)說(shuō)明理由;若不成立,則∠BPD,∠B,∠D之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;
(2)在圖②中,將直線AB繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖③,則∠BPD,∠B,∠D,∠BQD之間有何數(shù)量關(guān)系?(不需證明)
(3)根據(jù)(2)的結(jié)論,求圖④中∠A+∠B+∠C+∠D+∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了幫助市內(nèi)一名患“白血病”的中學(xué)生,東營(yíng)市某學(xué)校數(shù)學(xué)社團(tuán)15名同學(xué)積極捐款,捐款情況如下表所示,下列說(shuō)法正確的是( 。
捐款數(shù)額 | 10 | 20 | 30 | 50 | 100 |
人數(shù) | 2 | 4 | 5 | 3 | 1 |
A. 眾數(shù)是100 B. 中位數(shù)是30 C. 極差是20 D. 平均數(shù)是30
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A(﹣1,0),C(1,4),點(diǎn)B在x軸上,且AB=4.
(1)求點(diǎn)B的坐標(biāo),并畫(huà)出△ABC;
(2)求△ABC的面積;
(3)在y軸上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com