解:∵四邊形ABCD為矩形,
∴∠B=∠D=90°,
∴AB⊥BC,AD⊥DC,
(1)∵圓心A到BC邊的距離為AB=3,⊙A與BC相切,
∴r=AB=3,
則當(dāng)半徑r為3時,⊙A與BC相切;
![](http://thumb.zyjl.cn/pic5/upload/201310/5284d95c16559.png)
(2)連接BD,過A作AE⊥BD,交BD于點E,
∵在Rt△ABD中,AB=3,AD=4,
∴BD=
![](http://thumb.zyjl.cn/pic5/latex/61785.png)
=5,
又S
△ABD=
![](http://thumb.zyjl.cn/pic5/latex/13.png)
BD•AE=
![](http://thumb.zyjl.cn/pic5/latex/13.png)
AB•AD,
∴圓心A到BD邊的距離AE=
![](http://thumb.zyjl.cn/pic5/latex/1159.png)
=2.4,又⊙A與BC相切,
∴r=AE=2.4,
則當(dāng)半徑r為2.4時,⊙A與BD相切;
(3)∵⊙A與直線BC相交,圓心A到BC邊的距離為AB=3,
∴r>3,
又⊙A與直線CD相離,圓心A到BC邊的距離為AD=4,
∴r<4,
則當(dāng)半徑r的范圍為3<r<4時,⊙A與直線BC相交且與直線CD相離.
故答案為:3;2.4;3<r<4
分析:由四邊形ABCD為矩形,得到四個內(nèi)角為直角,根據(jù)垂直的定義得到AB垂直于BC,AD垂直于DC,
(1)由圓A與BC相切,得到圓心到直線的距離等于圓的半徑,因為AB為圓心A到BC的距離,所以圓A的半徑等于AB,進(jìn)而得到圓A與BC相切時半徑的值;
(2)連接BD,過A作AE垂直于BD,AE為A到BD的距離,由圓A與BD相切,得到圓心A到BD的距離等于圓的半徑,由三角形ABD為直角三角形,由AB及AD的長,利用勾股定理求出BD的長,根據(jù)AB,AD及BD的值,利用三角形的面積兩種求法求出AE的長,得出圓心A到BD的距離,即為圓A與BD相切時圓的半徑;
(3)由圓A與直線BC相交,得到圓心到直線的距離小于圓的半徑,即r大于AB,再由圓A與直線CD相離,得到圓心到直線的距離大于圓的半徑,即r小于AD,由AB及AD的長,可得出滿足題意r的范圍.
點評:此題考查了直線與圓的位置關(guān)系,涉及的知識有:矩形的性質(zhì),勾股定理,以及切線的性質(zhì),直線與圓的位置關(guān)系可以用d與r的大小關(guān)系來判定,當(dāng)d<r時,直線與圓相交;當(dāng)d=r時,直線與圓相切;當(dāng)d>r時,直線與圓相離.