分析 (1)求出∠BAC=∠EAD,根據SAS推出△ABC≌△ADE,推出四邊形ABCD的面積=三角形ACE的面積,即可得出答案;
(2)過點A作AG⊥CG,垂足為點G,求出AF=AG,求出CG=AG=GE,即可得出答案.
解答 解:
(1)∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAC=∠EAD,
在△ABC和△ADE中,
$\left\{\begin{array}{l}{AB=AD}\\{∠BAC=∠DAE}\\{AC=AE}\end{array}\right.$,
∴△ABC≌△ADE(SAS),
∵S四邊形ABCD=S△ABC+S△ACD,
∴S四邊形ABCD=S△ADE+S△ACD=S△ACE=$\frac{1}{2}$×102=50;
(2)證明:∵△ACE是等腰直角三角形,
∴∠ACE=∠AEC=45°,
由△ABC≌△ADE得:
∠ACB=∠AEC=45°,
∴∠ACB=∠ACE,
∴AC平分∠ECF;
過點A作AG⊥CG,垂足為點G,
∵AC平分∠ECF,AF⊥CB,
∴AF=AG,
又∵AC=AE,
∴∠CAG=∠EAG=45°,
∴∠CAG=∠EAG=∠ACE=∠AEC=45°,
∴CG=AG=GE,
∴CE=2AG,
∴CE=2AF.
點評 本題考查了全等三角形的性質和判定,等腰三角形的性質和判定,角平分線性質,直角三角形的性質的應用,能綜合運用性質進行推理是解此題的關鍵,難度適中.
科目:初中數學 來源: 題型:解答題
正方形ABCD內點的個數 | 1 | 2 | 3 | 4 | … |
分割成的三角形的個數 | 4 | 6 | 8 | 10 | … |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
一戶居民一個月用電量的范圍 | 電費價格(單位:元/度) |
不超過150度 | a |
超過150度但不超過300度的部分 | 0.65 |
超過300度的部分 | 0.9 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com