分析 (1)根據(jù)正、反比例函數(shù)的對稱性即可得出點(diǎn)A、C關(guān)于原點(diǎn)O成中心對稱,再結(jié)合點(diǎn)B與點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O成中心對稱,即可得出對角線BD、AC互相平分,由此即可證出四邊形ABCD的是平行四邊形;
(2)由點(diǎn)A的縱坐標(biāo)結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出n值,進(jìn)而得出點(diǎn)A的坐標(biāo)以及OA的長度,再根據(jù)矩形的性質(zhì)即可得出OB=OA,由點(diǎn)B的坐標(biāo)即可求出m值;
(3)由點(diǎn)A在第一象限內(nèi),點(diǎn)B在x軸正半軸上,可得出∠AOB<90°,而菱形的對角線互相垂直平分,由此即可得知四邊形ABCD不可能成為菱形.
解答 解:(1)∵正比例函數(shù)y=kx(k>0)與反比例函數(shù)y=$\frac{3}{x}$的圖象分別交于A、C兩點(diǎn),
∴點(diǎn)A、C關(guān)于原點(diǎn)O成中心對稱,
∵點(diǎn)B與點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O成中心對稱,
∴對角線BD、AC互相平分,
∴四邊形ABCD的是平行四邊形.
故答案為:平行四邊形.
(2)∵點(diǎn)A(n,3)在反比例函數(shù)y=$\frac{3}{x}$的圖象上,
∴3n=3,解得:n=1,
∴點(diǎn)A(1,3),
∴OA=$\sqrt{10}$.
∵四邊形ABCD為矩形,
∴OA=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,AC=BD,
∴OB=OA=$\sqrt{10}$,
∴m=$\sqrt{10}$.
(3)四邊形ABCD不可能成為菱形,理由如下:
∵點(diǎn)A在第一象限內(nèi),點(diǎn)B在x軸正半軸上,
∴∠AOB<90°,
∴AC與BD不可能互相垂直,
∴四邊形ABCD不可能成為菱形.
點(diǎn)評 本題考查了正比例函數(shù)的性質(zhì)、反比例函數(shù)的性質(zhì)、矩形的性質(zhì)以及菱形的性質(zhì),解題的關(guān)鍵是:(1)找出對角線BD、AC互相平分;(2)根據(jù)矩形的性質(zhì)找出OA=OB;(3)找出∠AOB<90°.本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)四邊形對角線的相交情況(互相平分、相等且互相平分、互相垂直平分)來判定圖形的形狀是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{12}-\sqrt{3}=\sqrt{3}$ | B. | $\sqrt{2}+\sqrt{3}=\sqrt{5}$ | C. | $3\sqrt{5}-\sqrt{5}=3$ | D. | $3+2\sqrt{2}=5\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com