【題目】從﹣2,﹣0,4中任取一個數(shù)記為m,再從余下的三個數(shù)中,任取一個數(shù)記為n,若kmn

1)請用列表或畫樹狀圖的方法表示取出數(shù)字的所有結(jié)果;

2)求正比例函數(shù)ykx的圖象經(jīng)過第一、三象限的概率.

【答案】1)詳見解析;(2

【解析】

1)畫樹狀圖展示所有12種等可能的結(jié)果數(shù);

2)利用正比例函數(shù)的性質(zhì)得到k0時,正比例函數(shù)ykx的圖象經(jīng)過第一、三象限,然后找出兩數(shù)之積為正數(shù)的結(jié)果數(shù),再利用概率公式計算即可.

解:(1)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù);

2)∵正比例函數(shù)ykx的圖象經(jīng)過第一、三象限,

,

而兩數(shù)之積為正數(shù)的情況數(shù)為2,即k0有兩種可能,

所以正比例函數(shù)ykx的圖象經(jīng)過第一、三象限的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知以E30)為圓心,以5為半徑的⊙Ex軸交于A,B兩點,與y軸交于C點,拋物線經(jīng)過AB,C三點,頂點為F

1)求A,B,C三點的坐標;

2)求拋物線的解析式及頂點F的坐標;

3)已知M為拋物線上一動點(不與C點重合),試探究:

使得以AB,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標;

若探究中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF⊙E的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在⊙O中,AB為直徑,點PAB的延長線上,PC與⊙O相切于點C,點D為弧AC上的點,且2DAB﹣∠P90°,連接AD

1)如圖1,求證:弧AD=弧BC

2)如圖2,PC6PB,求∠ADC度數(shù);

3)如圖3,在(2)的條件下,FAB下方⊙O上一點.∠ACF60°,LOF中點,LKALL,交CF于點K.連接AK,求AK的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點(M不與點BC重合),過點CCNDMAB于點N,連結(jié)OM、ON,MN.下列五個結(jié)論:CNB≌△DMC;ONOMONOM;AB2,則SOMN的最小值是1;AN2+CM2MN2.其中正確結(jié)論是_____;(只填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,,AD的角平分線,且,以點A為圓心,AD長為半徑畫弧EF,交AB于點E,交AC于點F

1)求由弧EF及線段FC、CB、BE圍成圖形(圖中陰影部分)的面積;

2)將陰影部分剪掉,余下扇形AEF,將扇形AEF圍成一個圓錐的側(cè)面,AEAF正好重合,圓錐側(cè)面無重疊,求這個圓錐的高h

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知的兩條弦,.若的直徑為,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,

1)觀察猜想

如圖1,分別交于點的值是 ,直線與直線相交所成的較小角的度數(shù)是

2)類比探究

如圖2,將繞點逆時針旋轉(zhuǎn),請寫出的值及直線與直線相交所成的小角的度數(shù),并就圖2的情形說明理由,

3)解決問題

,請直接寫出點在同一直線上時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為12(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86tan31°≈0.60).

1)求小明從點A走到點D的過程中,他上升的高度;

2)大樹BC的高度約為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線yax2+bx5x軸交于A(10)B(5,0)兩點,與y軸交于點C

(1)求此物線的解析式;

(2)在此物線的對稱軸上找一點M.使得MA+MC最小,請求出點M的坐標;

(3)在直線BC下方拋物線上是否存在點P,使得△PBC的面積最大?若存在.請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案