【題目】將長方形紙片向右上方翻折,使得點和點重合,畫出折痕以及翻折后的圖形,折痕與長方形的邊、分別交于點、,判斷重疊部分圖形的形狀.
【答案】圖詳見解析, 等腰三角形
【解析】
根據(jù)折疊該紙片,使得點A與點C重合,作出AC的垂直平分線交DC于E,AB于F,EF即為所求,根據(jù)折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等和平行線的性質(zhì)即可判斷重疊部分圖形的形狀.
解:如圖所示:
由圖形可知重疊部分圖形的形狀為三角形,
∵四邊形DAFE和四邊形D′CEF全等,
∴∠AFE=∠CFE,
∵四邊形ABCD為矩形,
∴DC∥AB,
∴∠CEF=∠AFE,
∵∠CEF=∠CFE,
∴CE=CF,
∴重疊部分圖形的形狀為特殊三角形:等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,PA、PB為⊙O的切線,M、N是PA、AB的中點,連接MN交⊙O點C,連接PC交⊙O于D,連接ND交PB于Q,求證:MNQP為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,證明定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
已知:點D、E分別是△ABC的邊AB、AC的中點.
求證:DE∥BC,DE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是以BC為直徑的⊙O上一點,AD⊥BC于點D,過點B作⊙O的切線,與CA的延長線相交于點E,G是AD的中點,連結(jié)CG并延長與BE相交于點F,延長AF與CB的延長線相交于點P.
(1)求證:BF=EF:
(2)求證:PA是⊙O的切線;
(3)若FG=BF,且⊙O的半徑長為3,求BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距50米,小烏龜從A地出發(fā)前往B地,第一次它前進1米,第二次它后退2米,第三次再前進3米,第四次又向后退4米…,按此規(guī)律行進,如果A地在數(shù)軸上表示的數(shù)為﹣16.
(1)求出B地在數(shù)軸上表示的數(shù);
(2)若B地在原點的右側(cè),經(jīng)過第七次行進后小烏龜?shù)竭_點P,第八次行進后到達點Q,點P、點Q到A地的距離相等嗎?說明理由?
(3)若B地在原點的右側(cè),那么經(jīng)過100次行進后,小烏龜?shù)竭_的點與點B之間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(49)(+91)(5)+(9);
(2)
(3)3x2-[7x-(4x-3)-2x2]
(4)解方程:x+13=5x+37
(5)先化簡,再求值:,其中x=﹣3,y=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意有理數(shù)a,b,
定義運算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運算.例如,2⊙5=2(2+5)﹣1=13.
(Ⅰ)求[1⊙(﹣2)]⊙3的值;
(Ⅱ)對于任意有理教m,n請你重新定義一種運算“⊕”,使得5⊕3=20,寫出你定義的運算:m⊕n=_____.(用含m,n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,連接DE交線段OA于點F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點,求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OF,OD分別是∠AOE,∠BOE的平分線.
(1)寫出∠DOE的補角;
(2)若∠BOE=62°,求∠AOD和∠EOF的度數(shù);
(3)試問射線OD與OF之間有什么特殊的位置關(guān)系?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com