【題目】如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標(biāo)系中,動點(diǎn)M、N以每秒1個單位的速度分別從點(diǎn)A、C同時出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個動點(diǎn)運(yùn)動了t秒時,過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.
(1)點(diǎn)B的坐標(biāo)為;用含t的式子表示點(diǎn)P的坐標(biāo)為;
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0<t<6),并求當(dāng)t為何值時,S有最大值?
(3)試探究:在上述運(yùn)動過程中,是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC的 ?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.
【答案】
(1)(6,4);(t, t)
(2)
解:∵S△OMP= ×OM× t,
∴S= ×(6﹣t)× t=﹣ t2+2t=﹣ (t﹣3)2+3(0<t<6).
∴當(dāng)t=3時,S有最大值.
(3)
解:存在.理由如下:
由(2)得,當(dāng)S有最大值時,點(diǎn)M、N的坐標(biāo)分別為:M(3,0),N(3,4),
則直線ON的函數(shù)關(guān)系式為:y= x.
設(shè)點(diǎn)T的坐標(biāo)為(0,b),則直線MT的函數(shù)關(guān)系式為:y=﹣ x+b,
解方程組 得 ,
∴直線ON與MT的交點(diǎn)R的坐標(biāo)為( , ),
∵S△OCN= ×4×3=6,
∴S△ORT= S△OCN=2,
①當(dāng)點(diǎn)T在點(diǎn)O、C之間時,分割出的三角形是△OR1T1,
如圖2所示,作R1D1⊥y軸,D1為垂足,則S△OR1T1= RD1OT= b=2.
∴3b2﹣4b﹣16=0,
解得:b= (負(fù)值舍去).
∴b= ,
此時點(diǎn)T1的坐標(biāo)為(0, ).
②當(dāng)點(diǎn)T在OC的延長線上時,分割出的三角形是△R2NE,如圖,設(shè)MT交CN于點(diǎn)E,
由①得點(diǎn)E的橫坐標(biāo)為 ,作R2D2⊥CN交CN于點(diǎn)D2,則
S△R2NE= ENR2D2= (3﹣ )(4﹣ = =2.
∴b2+4b﹣48=0,
解得:b=±2 ﹣2(負(fù)值舍去).
∴b=2 ﹣2.
∴此時點(diǎn)T2的坐標(biāo)為(0,2 ).
綜上所述,在y軸上存在點(diǎn)T1(0, ),T2(0,2 ﹣2)符合條件.
【解析】解:(1)延長NP交OA于H,如圖1所示:
∵矩形OABC,
∴BC∥OA,∠OCB=90°,
∵PN⊥BC,
∴NH∥OC,
∴四邊形CNHO是平行四邊形,
∴OH=CN,
∵OA=6,AB=4,
∴點(diǎn)B的坐標(biāo)為(6,4);
由圖可得,點(diǎn)P的橫坐標(biāo)=0H=CN=t,縱坐標(biāo)=4﹣NP,
∵NP⊥BC,
∴NP∥OC,
∴NP:OC=BN:CB,
即NP:4=(6﹣t):6,
∴NP=4﹣ t,
∴點(diǎn)P的縱坐標(biāo)=4﹣NP= t,
則點(diǎn)P的坐標(biāo)為(t, t);
所以答案是:(6,4);(t, t);
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的最值和平行四邊形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a;若一直線過平行四邊形兩對角線的交點(diǎn),則這條直線被一組對邊截下的線段以對角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,點(diǎn)D為AB下方⊙O上一點(diǎn),點(diǎn)C為弧ABD中點(diǎn),連接CD,CA.
(1)求證:∠ABD=2∠BDC;
(2)過點(diǎn)C作CH⊥AB于H,交AD于E,求證:EA=EC;
(3)在(2)的條件下,若OH=5,AD=24,求線段DE的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)M是AC的中點(diǎn),以AB為直徑做⊙O分別交AC,BM于點(diǎn)D、E.
(1)求證:∠MDE=∠MED;
(2)填空: ①若AB=6,當(dāng)DM=2AD時,DE=;
②連接OD、OE,當(dāng)∠C的度數(shù)為時,四邊形ODME是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平行四邊形ABCD中,∠B=60°,將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,角的兩邊所在的兩直線分別交線段AB、AD于點(diǎn)E、F(不包括線段的端點(diǎn)).
(1)問題發(fā)現(xiàn):
如圖1,若平行四邊形ABCD為菱形,
試猜想線段AE、AF、AC之間的數(shù)量關(guān)系 ,請證明你的猜想.
(2)類比探究:
如圖2,若AB:AD=1:2,過點(diǎn)C作CH⊥AD于點(diǎn)H,求AE:FH的比值;
(3)拓展延伸:
如圖3,若AB:AD=1:4,請直接寫出(AE+4AF):AC的比值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級:1級質(zhì)量為優(yōu);2級質(zhì)量為良;3級質(zhì)量為輕度污染;4級質(zhì)量為中度污染;5級質(zhì)量為重度污染.某城市隨機(jī)抽取了一年中某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息,解答下列各題:
(1)本次調(diào)查共抽取了天的空氣質(zhì)量檢測結(jié)果進(jìn)行統(tǒng)計(jì);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中3級空氣質(zhì)量所對應(yīng)的圓心角為°;
(4)如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動,根據(jù)目前的統(tǒng)計(jì),請你估計(jì)該年該城市只有多少天適宜戶外活動.(一年天數(shù)按365天計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于坐標(biāo)平面內(nèi)的點(diǎn),現(xiàn)將該點(diǎn)向右平移1個單位,再向上平移2的單位,這種點(diǎn)的運(yùn)動稱為點(diǎn)A的斜平移,如點(diǎn)P(2,3)經(jīng)1次斜平移后的點(diǎn)的坐標(biāo)為(3,5),已知點(diǎn)A的坐標(biāo)為(1,0).
(1)分別寫出點(diǎn)A經(jīng)1次,2次斜平移后得到的點(diǎn)的坐標(biāo).
(2)如圖,點(diǎn)M是直線l上的一點(diǎn),點(diǎn)A關(guān)于點(diǎn)M的對稱點(diǎn)的點(diǎn)B,點(diǎn)B關(guān)于直線l的對稱軸為點(diǎn)C.
①若A、B、C三點(diǎn)不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點(diǎn)B由點(diǎn)A經(jīng)n次斜平移后得到,且點(diǎn)C的坐標(biāo)為(7,6),求出點(diǎn)B的坐標(biāo)及n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小敏家廚房一墻角處有一自來水管,裝修時為了美觀,準(zhǔn)備用木板從AB處將水管密封起來,互相垂直的兩墻面與水管分別相切于D,E兩點(diǎn),經(jīng)測量AD=10cm,BE=15cm, 則該自來水管的半徑為( )cm.
A.5
B.10
C.6
D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com