【題目】在平面直角坐標(biāo)系中,對于點P(x,y),我們把點P′(﹣y+1,x+1)叫做點P的伴隨點.已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An,….若點A1的坐標(biāo)為(a,b),則點A2020的坐標(biāo)為( )
A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)
【答案】D
【解析】
據(jù)“伴隨點”的定義依次求出各點,不難發(fā)現(xiàn),每4個點為一個循環(huán)組依次循環(huán),用2020除以4,根據(jù)商和余數(shù)的情況確定點的坐標(biāo)即可.
解:觀察發(fā)現(xiàn):A1(a,b),A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),A6(﹣b+1,a+1)…
∴依此類推,每4個點為一個循環(huán)組依次循環(huán),
∵2020÷4=505,
∴點A2020的坐標(biāo)與A4的坐標(biāo)相同,為(b﹣1,﹣a+1),
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程ax+b=0(a≠0)的解為x=-2,點(1,3)是拋物線y=ax2+bx+c(a≠0)上的一個點,則下列四個點中一定在該拋物線上的是( )
A. (2,3) B. (0,3)
C. (-1,3) D. (-3,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.在△AOB中∠AOB=,OA=OB=10,分別以OA、OB所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系(如圖所示).點P自點A出發(fā)沿線段AB勻速運動到點B停止,同時點D自原點O出發(fā)沿x軸正方向勻速運動,在點P、D運動的過程中,始終滿足PO=PD,過點O、D向AB作垂線,垂足分別為點C、E,設(shè)OD的長為x.
(1)求AP的長(用含x的代數(shù)式表示)
(2)在點P、D的運動過程中,線段PC與DE是否相等?若相等,請給予證明;若不相等,請說明理由;
(3)設(shè)以點P、O、D、E為頂點的四邊形的面積為y,請直接寫出y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).
(1)請畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于x軸對稱;
(2)將△ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B2,C2的坐標(biāo);
(3)若點P(a,b)是△ABC內(nèi)任意一點,試寫出將△ABC繞點O逆時針旋轉(zhuǎn)90°后點P的對應(yīng)點P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線m與直線n垂直相交于O,點A在直線m上運動,點B 在直線n上運動,AC、BC分別是∠BAO和∠ABO的角平分線.
(1)求∠ACB的大;
(2)如圖2,若BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點D,點A、B在運動的過程中,∠ADB的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;
(3)如圖3,過C作直線與AB交于F,且滿足∠AGO-∠BCF=45°,求證:CF∥OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以△ABC的邊AB,AC所在直線為對稱軸作△ABC的對稱圖形△ABD和△ACE,∠BAC=150°,線段BD與CE相交于點O,連接BE、ED、DC、OA.有如下結(jié)論:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④2EA=ED;⑤BP=EQ.其中正確的結(jié)論個數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,,,,CP、CM分別是AB上的高和中線,如果圓A是以點A為圓心,半徑長為2的圓,那么下列判斷正確的是( )
A. 點P,M均在圓A內(nèi) B. 點P、M均在圓A外
C. 點P在圓A內(nèi),點M在圓A外 D. 點P在圓A外,點M在圓A內(nèi)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(a,1),B(b,﹣2),C(0,c),且(a﹣2)2++|c+2|=0.
(1)如圖1,求A、B、C三點的坐標(biāo).
(2)如圖2,延長AC至P(﹣a,﹣5),連PO、PB.求.
(3)將線段AC平移,使點A的對應(yīng)點E恰好落在y軸正半軸上,點C的對應(yīng)點為F,連AF交y軸于G,當(dāng)EG=3OG時,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃河,既是一條源遠(yuǎn)流長、波瀾壯闊的自然河,又是一條孕育中華民族燦爛文明的母親河.?dāng)?shù)學(xué)課外實踐活動中,小林和同學(xué)們在黃河南岸小路上的A,B兩點處,用測角儀分別對北岸的觀景亭D進行測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=200米,求觀景亭D到小路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com