【題目】如圖(1)已知矩形AOCD在平面直角坐標系xOy中,∠CAO=60°,OA=2,B點的坐標為(2,0),動點M以每秒2個單位長度的速度沿A→C→B運動(M點不與點A、點B重合),設(shè)運動時間為t秒.
(1)求經(jīng)過B、C、D三點的拋物線解析式;
(2)點P在(1)中的拋物線上,當M為AC中點時,若△PAM≌△PDM,求點P的坐標;
(3)當點M在CB上運動時,如圖(2)過點M作ME⊥AD,MF⊥x軸,垂足分別為E、F,設(shè)矩形AEMF與△ABC重疊部分面積為S,求S與t的函數(shù)關(guān)系式,并求出S的最大值;
(4)如圖(3)點P在(1)中的拋物線上,Q是CA延長線上的一點,且P、Q兩點均在第三象限內(nèi),Q、A是位于直線BP同側(cè)的不同兩點,若點P到x軸的距離為d,△QPB的面積為2d,求點P的坐標.
【答案】(1)y= ;(2)點P(﹣1+,)或(﹣1﹣,);(3)S=﹣(t﹣)2+,當t=時,S最大=;(4)P(﹣8,-10)
【解析】
(1)由直角三角形的性質(zhì)可求點C,點D坐標,由待定系數(shù)法可求解析式;
(2)由全等三角形的性質(zhì)可得DM=AM,PD=AP,可得點P在AD的垂直平分線上,可求點P的縱坐標,代入可求解;
(3)由題意可證△ACB是等邊三角形,可得CM=2t-4,BF=(8﹣2t)=4﹣t,MF=4﹣t,AF=t,即可求重疊部分面積,由二次函數(shù)的性質(zhì)可求解;
(4)由題意先求出直線AC,BP的解析式,即可求點P坐標.
解:(1)∵四邊形ABCD是矩形,
∴CD=AO=2,∠AOC=90°,且∠CAO=60°,OA=2,
∴OC=2,
∴點C(0,2),點D(﹣2,2),
設(shè)拋物線解析式為y=a(x+1)2+c,代B(2,0),C(0,2)
∴
解得:
∴拋物線解析式為y=﹣(x+1)2+=,
(2)∵M為AC中點,
∴MA=MD,
∵△PAM≌△PDM,
∴PA=PD,
∴點P在AD的垂直平分線上
∴點P縱坐標為,
∴
∴x1=﹣1+,x2=﹣1﹣
∴點P(﹣1+,)或(﹣1﹣,)
(3)如圖2,
∵AO=BO=2,CO⊥AB,
∴AC=BC=4,∠CAO=60°,
∴△ACB是等邊三角形,
由題意可得:CM=2t﹣4,BF=(8﹣2t)=4﹣t,MF=4﹣t,AF=t.
∵四邊形AEMF是矩形,
∴AE=MF,EM=AF,EM∥AB,
∴∠CMH=∠CBA=60°,∠CHM=∠CAO=60°,
∴△CMH是等邊三角形,
∴CM=MH=2t﹣4,
∵S=(2t﹣4+t)(4﹣t)=﹣(t﹣)2+
當t=時,S最大=,
(4)∵S△ABP=×4×d=2d,
又S△BPQ=2d
∴S△ABP=S△BPQ,
∴AQ∥BP
設(shè)直線AC解析式為y=kx+b,
把A(﹣2,0),C(0,2)代入其中,得
∴
∴直線AC解析式為:y=x+2,
設(shè)直線BP 的解析式為y=x+n,把B(2,0)代入其中,得
0=2+n,
∴b=﹣2
∴直線BP解析式為:y=x﹣2,
∴=x﹣2,
∴x1=2(舍去),x2=﹣8,
∴P(﹣8,-10).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C,D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B,D,交y軸為E.
(1)求二次函數(shù)的解析式;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x-3,下列說法中正確的是( )
A.該函數(shù)圖象的開口向下B.該函數(shù)圖象的頂點坐標是(-2,-7)
C.當x<0時,y隨x的增大而增大D.該函數(shù)圖象與x軸有兩個不同的交點,且分布在坐標原點兩側(cè)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某球室有三種品牌的個乒乓球,價格是7,8,9(單位:元)三種.從中隨機拿出一個球,已知(一次拿到元球).
(1)求這個球價格的眾數(shù);
(2)若甲組已拿走一個元球訓練,乙組準備從剩余個球中隨機拿一個訓練.
①所剩的個球價格的中位數(shù)與原來個球價格的中位數(shù)是否相同?并簡要說明理由;
②乙組先隨機拿出一個球后放回,之后又隨機拿一個,用列表法(如圖)求乙組兩次都拿到8元球的概率.
又拿 先拿 | |||
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+(m+1)x﹣m﹣2(m>0)與x軸交于A、B兩點,與y軸交于點C,不論m取何正數(shù),經(jīng)過A、B、C三點的⊙P恒過y軸上的一個定點,則該定點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分10分)科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):
溫度/℃ | …… | -4 | -2 | 0 | 2 | 4 | 4.5 | …… |
植物每天高度增長量/mm | …… | 41 | 49 | 49 | 41 | 25 | 19.75 | …… |
由這些數(shù)據(jù),科學家推測出植物每天高度增長量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)請你選擇一種適當?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡要說明不選擇另外兩種函數(shù)的理由;
(2)溫度為多少時,這種植物每天高度的增長量最大?
(3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度應(yīng)該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線與直線交于,兩點,點是拋物線的頂點.
(1)求拋物線的解析式;
(2)點是直線上方拋物線上的一個動點,其橫坐標為,過點作軸的垂線,交直線于點,當線段的長度最大時,求的值及的最大值.
(3)在拋物線上是否存在異于、的點,使中邊上的高為,若存在求出點的坐標;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為 度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com