【題目】已知,△ABC中,∠ACB=90°,AC=BC=8,點(diǎn)A在半徑為5的⊙O上,點(diǎn)O在直線l上.
(1)如圖①,若⊙O經(jīng)過點(diǎn)C,交BC于點(diǎn)D,求CD的長(zhǎng).
(2)在(1)的條件下,若BC邊交l于點(diǎn)E,OE=2,求BE的長(zhǎng).
(3)如圖②,若直線l還經(jīng)過點(diǎn)C,BC是⊙O 的切線,F為切點(diǎn),則CF的長(zhǎng)為____.
【答案】(1)CD=6;(2)BE=5-2;(3)4.
【解析】
(1)由圓周角定理可得AD是直徑,根據(jù)勾股定理可求CD的長(zhǎng);
(2)過點(diǎn)O作OF⊥CD,垂足為F,根據(jù)垂徑定理可得CF=DF=3,根據(jù)中位線定理可得OF=4,根據(jù)勾股定理可求EF的長(zhǎng),即可求BE的長(zhǎng);
(3)連接OF,OA,過點(diǎn)O作OE⊥AC于點(diǎn)E,可證四邊形OECF是矩形,可得CF=OE,FO=CE=5,由勾股定理可求AE的長(zhǎng),即可求CF的長(zhǎng).
解:(1)如圖:連接AD
∵∠ACB=90°,
∴AD是直徑
∴AD=10
在Rt△ACD中,CD=6
(2)如圖:過點(diǎn)O作OF⊥CD,垂足為F
∵OF⊥CD
∴CF=DF=3,且AO=DO
∴OF=AC=4
在Rt△OFE中,EF=
∵BE=BC-CF-EF
∴BE=8-3-
(3)如圖:連接OF,OA,過點(diǎn)O作OE⊥AC于點(diǎn)E,
∵BC是⊙O 的切線
∴OF⊥BC,
∴∠BFO=∠ACB=90°,OE⊥CE,
∴四邊形OECF是矩形
∴CF=OE,FO=CE=5,
∴AE=AC-CE=3
在Rt△AEO中,OE==4,
∴CF=4
故答案為:4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,AB=4cm,AD=3cm,動(dòng)點(diǎn)M,N分別從點(diǎn)D,B同時(shí)出發(fā),都以1cm/s的速度運(yùn)動(dòng).點(diǎn)M沿DA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)N作NP⊥BC,交AC于點(diǎn)O,連接MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了ts(0<t<3).
(1)當(dāng)t為多少時(shí),PM∥AB?
(2)若四邊形CDMP的面積為S,試求S與t的函數(shù)關(guān)系式.
(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t使四邊形CDMP面積與四邊形ABCD面積比為3:8?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
(4)在點(diǎn)M,N運(yùn)動(dòng)過程中,△MPA能否成為一個(gè)等腰三角形?若能,求出所有可能的t值;若不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□的對(duì)角線相交于點(diǎn),且AE∥BD,BE∥AC,OE = CD.
(1)求證:四邊形ABCD是菱形;
(2)若AD = 2,則當(dāng)四邊形ABCD的形狀是_______________時(shí),四邊形的面積取得最大值是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科普小組有5名成員,身高(單位:cm)分別為:160,165,170,163,172,把身高160 cm的成員替換成一位165 cm的成員后,現(xiàn)科普小組成員的身高與原來相比,下列說法正確的是( )
A.平均數(shù)變小,方差變小B.平均數(shù)變大,方差變大
C.平均數(shù)變大,方差不變D.平均數(shù)變大,方差變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】跳繩是大家喜聞樂見的一項(xiàng)體育運(yùn)動(dòng),集體跳繩時(shí),需要兩人同頻甩動(dòng)繩子,當(dāng)繩子甩到最高處時(shí),其形狀可近似看作拋物線,下圖是小明和小亮甩繩子到最高處時(shí)的示意圖,兩人拿繩子的手之間的距離為4,離地面的高度為1,以小明的手所在位置為原點(diǎn)建立平面直角坐標(biāo)系.
(1)當(dāng)身高為15的小紅站在繩子的正下方,且距小明拿繩子手的右側(cè)1處時(shí),繩子剛好通過小紅的頭頂,求繩子所對(duì)應(yīng)的拋物線的表達(dá)式;
(2)若身高為的小麗也站在繩子的正下方.
①當(dāng)小麗在距小亮拿繩子手的左側(cè)1.5處時(shí),繩子能碰到小麗的頭嗎?請(qǐng)說明理由;
②設(shè)小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求的取值范圍.(參考數(shù)據(jù): 取3.16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說明理由;
(3)若CE=1,AC=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查學(xué)生對(duì)垃圾分類及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:
成績(jī)x 學(xué)校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(說明:成績(jī)80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)
b.甲校成績(jī)?cè)?/span>這一組的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 74.2 | n | 85 |
乙 | 73.5 | 76 | 84 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測(cè)試中,某學(xué)生的成績(jī)是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填“甲”或“乙”),理由是__________;
(3)假設(shè)乙校800名學(xué)生都參加此次測(cè)試,估計(jì)成績(jī)優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜坡BE,坡頂B到水平地面的距離AB為3米,坡底AE為18米,在B處,E處分別測(cè)得CD頂部點(diǎn)D的仰角為30°,60°,求CD的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com