精英家教網 > 初中數學 > 題目詳情

【題目】一次函數y=ax+b與反比例函數y= ,其中ab<0,a、b為常數,它們在同一坐標系中的圖象可以是(
A.
B.
C.
D.

【答案】C
【解析】解:A、由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0, 滿足ab<0,
∴a﹣b>0,
∴反比例函數y= 的圖象過一、三象限,
所以此選項不正確;
B、由一次函數圖象過二、四象限,得a<0,交y軸正半軸,則b>0,
滿足ab<0,
∴a﹣b<0,
∴反比例函數y= 的圖象過二、四象限,
所以此選項不正確;
C、由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0,
滿足ab<0,
∴a﹣b>0,
∴反比例函數y= 的圖象過一、三象限,
所以此選項正確;
D、由一次函數圖象過二、四象限,得a<0,交y軸負半軸,則b<0,
滿足ab>0,與已知相矛盾
所以此選項不正確;
故選C.
【考點精析】根據題目的已知條件,利用一次函數的圖象和性質和反比例函數的圖象的相關知識可以得到問題的答案,需要掌握一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;反比例函數的圖像屬于雙曲線.反比例函數的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△AOB為等腰三角形,頂點A的坐標(2, ),底邊OB在x軸上.將△AOB繞點B按順時針方向旋轉一定角度后得△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為( )

A.( ,
B.( ,
C.(
D.( ,4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°AB=AC,直線m經過點ABD直線m, CE直線m,垂足分別為點DE.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應用:如圖3D、EDA、E三點所在直線m上的兩動點(DA、E三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BDCE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)直接寫出點C和點D的坐標;
(3)若點P在第一象限內的拋物線上,且SABP=4SCOE , 求P點坐標. 注:二次函數y=ax2+bx+c(a≠0)的頂點坐標為(﹣ ,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明在某次作業(yè)中得到如下結果: sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°≈( 2+( 2=1.
據此,小明猜想:對于任意銳角α,均有sin2α+sin2(90°﹣α)=1.
(Ⅰ)當α=30°時,驗證sin2α+sin2(90°﹣α)=1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,請給予證明;若不成立,請舉出一個反例.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一張矩形紙片ABCD的邊BC斜著向AD邊對折,使點B落在AD邊上,記為B′,折痕為CE,再將CD邊斜向下對折,使點D落在B′C邊上,記為D′,折痕為CG,B′D′=2,BE= BC.則矩形紙片ABCD的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c經過平行四邊形ABCD的頂點A(0,3)、B(﹣1,0)、D(2,3),拋物線與x軸的另一交點為E.經過點E的直線l將平行四邊形ABCD分割為面積相等兩部分,與拋物線交于另一點F.點P在直線l上方拋物線上一動點,設點P的橫坐標為t

(1)求拋物線的解析式;
(2)當t何值時,△PFE的面積最大?并求最大值的立方根;
(3)是否存在點P使△PAE為直角三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B為切點,∠APB=60°,連接PO并延長與⊙O交于C點,連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在四棱柱ABCD﹣A1B1C1D1中,四邊形ABCD為平行四邊形,AA1⊥平面ABCD,∠BAD=60°,AB=2,BC=1.AA1= ,E為A1B1的中點.
(1)求證:平面A1BD⊥平面A1AD;
(2)求多面體A1E﹣ABCD的體積.

查看答案和解析>>

同步練習冊答案