【題目】某校為了創(chuàng)建書(shū)香校遠(yuǎn),計(jì)劃進(jìn)一批圖書(shū),經(jīng)了解.文學(xué)書(shū)的單價(jià)比科普書(shū)的單價(jià)少20元,用800元購(gòu)進(jìn)的文學(xué)書(shū)本數(shù)與用1200元購(gòu)進(jìn)的科普書(shū)本數(shù)相等.
(1)文學(xué)書(shū)和科普書(shū)的單價(jià)分別是多少元?
(2)該校計(jì)劃用不超過(guò)5000元的費(fèi)用購(gòu)進(jìn)一批文學(xué)書(shū)和科普書(shū),問(wèn)購(gòu)進(jìn)60本文學(xué)書(shū)后最多還能購(gòu)進(jìn)多少本科普書(shū)?
【答案】(1)文學(xué)書(shū)的單價(jià)為40元/本,科普書(shū)的單價(jià)為60元/本;(2)購(gòu)進(jìn)60本文學(xué)書(shū)后最多還能購(gòu)進(jìn)43本科普書(shū).
【解析】
(1)設(shè)文學(xué)書(shū)的單價(jià)為x元/本,則科普書(shū)的單價(jià)為(x+20)元/本,根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合用800元購(gòu)進(jìn)的文學(xué)書(shū)本數(shù)與用1200元購(gòu)進(jìn)的科普書(shū)本數(shù)相等,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;
(2)設(shè)購(gòu)進(jìn)m本科普書(shū),根據(jù)總價(jià)=文學(xué)書(shū)的單價(jià)×購(gòu)進(jìn)本數(shù)+科普書(shū)的單價(jià)×購(gòu)進(jìn)本數(shù)結(jié)合總價(jià)不超過(guò)5000元,即可得出關(guān)于m的一元一次不等式,解之取其中的最大整數(shù)值即可得出結(jié)論.
解:(1)設(shè)文學(xué)書(shū)的單價(jià)為x元/本,則科普書(shū)的單價(jià)為(x+20)元/本,
依題意,得:,
解得:x=40,
經(jīng)檢驗(yàn),x=40是原分式方程的解,且符合題意,
∴x+20=60.
答:文學(xué)書(shū)的單價(jià)為40元/本,科普書(shū)的單價(jià)為60元/本.
(2)設(shè)購(gòu)進(jìn)m本科普書(shū),
依題意,得:40×60+60m≤5000,
解得:m≤.
∵m為整數(shù),
∴m的最大值為43.
答:購(gòu)進(jìn)60本文學(xué)書(shū)后最多還能購(gòu)進(jìn)43本科普書(shū).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(2,1),B(-1,n)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)求一次例函數(shù)的解析式;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左側(cè),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).
求這個(gè)二次函數(shù)的表達(dá)式.
連接、,并把沿翻折,得到四邊形,那么是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形的面積最大?求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中有一格點(diǎn)三角形,該三角形的三個(gè)頂點(diǎn)為:A(1,1),B(﹣3,1),C(﹣3,﹣1).
(1)若△ABC的外接圓的圓心為P,則點(diǎn)P的坐標(biāo)為_____,⊙P的半徑為_____;
(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標(biāo)原點(diǎn)O點(diǎn)為位似中心,將△ABC按相似比2:1放大,A、B、C的對(duì)應(yīng)點(diǎn)分別為A'、B'、C'.①畫出△A'B'C';②將△A'B'C'沿x軸方向平移,需平移_____個(gè)單位長(zhǎng)度,能使得B'C'所在的直線與⊙P相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為6,面積是18,腰AC的垂直平分線EF分別交AC,AB于E,F點(diǎn),若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△CDM的周長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.
根據(jù)圖示填寫下表:
平均數(shù)分 | 中位數(shù)分 | 眾數(shù)分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;
計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是正方形場(chǎng)地,點(diǎn)E在DC的延長(zhǎng)線上,AE與BC相交于點(diǎn)F,有甲、乙、丙三名同學(xué)同時(shí)從點(diǎn)A出發(fā),甲沿著A﹣B﹣F﹣C的路徑行走至C,乙沿著A﹣F﹣E﹣C﹣D的路徑行走至D,丙沿著A﹣F﹣C﹣D的路徑行走至D,若三名同學(xué)行走的速度都相同,則他們到達(dá)各自的目的地的先后順序(由先至后)是( )
A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)y1>y2時(shí),試比較x1與x2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為解決部分市民冬季集中取暖問(wèn)題,需鋪設(shè)一條長(zhǎng)4000米的管道,為盡量減少施工對(duì)交通造成的影響,施工時(shí)“…”,設(shè)實(shí)際每天鋪設(shè)管道x米,則可得方程=20,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( 。
A. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期20天完成
B. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期20天完成
C. 每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前20天完成
D. 每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前20天完成
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com