如圖(1)所示,梯形ABCD中,AD∥BC,AB=DC.

(1)如果P,E,F(xiàn)分別是BC,AC,BD的中點.求證AB=PE+PF;

(2)如果P是BC上的任意一點(中點除外),PE∥AB,PF∥DC.

如圖(2)所示,那么AB=PE+PF這個結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,求梯形ABCD的高CD的長.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(滿分13分)如圖12.1,已知拋物線經(jīng)過坐標(biāo)原點Ox軸上另一點E(4,0),頂點M的坐標(biāo)為 (m,4),直角梯形ABCD的頂點A與點O重合,ADAB分別在x軸、y軸上,且BC=1,AD=2,AB=3.

(1)求m的值及該拋物線的函數(shù)關(guān)系式;

(2)將直角梯形ABCD以每秒1個單位長度的速度從圖12.1所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向點B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖12.2所示).

① 當(dāng)t為何值時,△PNC是以PN為底邊的等腰三角形 ;

② 設(shè)以P、NC、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年海南省海口市初三學(xué)業(yè)模擬考試數(shù)學(xué)卷 題型:解答題

(滿分13分)如圖12.1,已知拋物線經(jīng)過坐標(biāo)原點Ox軸上另一點E(4,0),頂點M的坐標(biāo)為 (m,4),直角梯形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且BC=1,AD=2,AB=3.
(1)求m的值及該拋物線的函數(shù)關(guān)系式;
(2)將直角梯形ABCD以每秒1個單位長度的速度從圖12.1所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向點B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖12.2所示).
①當(dāng)t為何值時,△PNC是以PN為底邊的等腰三角形;
②設(shè)以PNCD為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年海南省海口市初三學(xué)業(yè)模擬考試數(shù)學(xué)卷 題型:解答題

(滿分13分)如圖12.1,已知拋物線經(jīng)過坐標(biāo)原點Ox軸上另一點E(4,0),頂點M的坐標(biāo)為 (m,4),直角梯形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且BC=1,AD=2,AB=3.

(1)求m的值及該拋物線的函數(shù)關(guān)系式;

(2)將直角梯形ABCD以每秒1個單位長度的速度從圖12.1所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向點B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖12.2所示).

① 當(dāng)t為何值時,△PNC是以PN為底邊的等腰三角形 ;

② 設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案