(滿分13分)如圖12.1,已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)Ox軸上另一點(diǎn)E(4,0),頂點(diǎn)M的坐標(biāo)為 (m,4),直角梯形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且BC=1,AD=2,AB=3.
(1)求m的值及該拋物線的函數(shù)關(guān)系式;
(2)將直角梯形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖12.1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向點(diǎn)B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖12.2所示).
①當(dāng)t為何值時(shí),△PNC是以PN為底邊的等腰三角形;
②設(shè)以PN、C、D為頂點(diǎn)的多邊形面積為S,試問(wèn)S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

 

(1)由已知,根據(jù)拋物線的軸對(duì)稱性,得m=2,
∴ 頂點(diǎn)M的坐標(biāo)為(2,4),                        ………………(1分)
故可設(shè)其關(guān)系式為y=a(x-2)2+4.
又拋物線經(jīng)過(guò)O(0,0),于是得a(0-2)2+4=0,解得 a=-1. ………(3分)
∴ 所求函數(shù)關(guān)系式為y=-(x-2)2+4,即y=-x2+4x.            ………(4分)
(2)① ∵ 點(diǎn)Ax軸的正半軸上,且N在拋物線上,CBPN,
OA=AP=t
∴ 點(diǎn)P,B,N的坐標(biāo)分別為(t,t),(t,3),(t, -t2+4t).
BP=3-t,AN= -t2+4t(0≤t≤3).
PN=AN-AP=(-t2+4t)-t=-t2+3t=t(3-t)≥0.                ………(6分)
要使得△PNC是以PN為底邊的等腰三角形,
只需PN=2BP,即-t2+3t=2(3-t),
整理,得t2-5t+6=0,解得 t1=2,t2=3.
當(dāng)t=3時(shí),P,N兩點(diǎn)重合,不符合題意,舍去.
∴ 當(dāng)t=2時(shí),△PNC是以PN為底邊的等腰三角形.         ………(8分)
S存在最大值.                                         ………(9分)
(。┊(dāng)PN=0,即t=0或t=3時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形是三角形.
t=0,則S=AD·AB=·3·2=3.
t=3,則S=BC·AB=·1·3=.
(ⅱ)當(dāng)PN≠0,即0<t<3時(shí),以點(diǎn)P,N,CD為頂點(diǎn)的多邊形是四邊形.
連結(jié)PD,CN,則
S=S四邊形ANCD-SADP= S梯形ABCD+SBCN -SADP
=(BC+ADAB+BN·BC-AP·AD
=(1+2)·3+(-t2+4t- 3)·1-t·2
=-t2+t+ 3=-(t-1)2+.
由-<0,0<t<3,當(dāng)t=1時(shí),S最大=.
綜上所述,當(dāng)t=1時(shí),以點(diǎn)P,N,CD為頂點(diǎn)的多邊形面積有最大值,
這個(gè)最大值為.                                 ………………(13分)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·漳州)(滿分13分)如圖,直線y=-2x+2與x軸、y軸分別交于AB兩點(diǎn),將△OAB繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)90°后得到△OCD

(1)填空:點(diǎn)C的坐標(biāo)是(_   ▲   ,_  ▲   ),

點(diǎn)D的坐標(biāo)是(_   ▲   ,_  ▲   );

(2)設(shè)直線CDAB交于點(diǎn)M,求線段BM的長(zhǎng);

(3)在y軸上是否存在點(diǎn)P,使得△BMP是等腰三角形?若存在,

請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分13分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.

⑴ 求證:△AMB≌△ENB;

⑵ ①當(dāng)M點(diǎn)在何處時(shí),AM+CM的值最。

②當(dāng)M點(diǎn)在何處時(shí),AM+BM+CM的值最小,并說(shuō)明理由;

⑶ 當(dāng)AM+BM+CM的最小值為時(shí),求正方形的邊長(zhǎng).

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分13分)如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng).已知F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動(dòng)距離為xx>0).

⑴△EFG的邊長(zhǎng)是____(用含有x的代數(shù)式表示),當(dāng)x=2時(shí),點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時(shí),yx之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時(shí),y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時(shí),存在最大值,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(福建泉州卷)數(shù)學(xué) 題型:解答題

(本小題滿分13分)如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐
標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對(duì)應(yīng)點(diǎn)為A,點(diǎn)N的對(duì)應(yīng)點(diǎn)為B,點(diǎn)H的對(duì)應(yīng)點(diǎn)為C);
(2)求出過(guò)A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)截取CE=OF=AG=m,且E,F(xiàn),G分別在線段CO,OA,AB上,求四邊形BEFG的面積S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;面積S是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由;
(4)在(3)的情況下,四邊形BEFG是否存在鄰邊相等的情況,若存在,請(qǐng)直接寫出此時(shí)m的值,并指出相等的鄰邊;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(云南紅河) 題型:解答題

(滿分13分)如圖11,在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn)B、C ;拋物線經(jīng)過(guò)B、C兩點(diǎn),并與軸交于另一點(diǎn)A.

 

(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)設(shè)是(1)所得拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線軸于點(diǎn)M,交直線BC于點(diǎn)N .

① 若點(diǎn)P在第一象限內(nèi).試問(wèn):線段PN的長(zhǎng)度是否存在最大值 ?若存在,求出它的最大值及此時(shí)x的值;若不存在,請(qǐng)說(shuō)明理由;

② 求以BC為底邊的等腰△BPC的面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案