如圖,拋物線(xiàn)y=x2+bx-c經(jīng)過(guò)直線(xiàn)y=x-3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,此拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D.
(1)求此拋物線(xiàn)的解析式;
(2)點(diǎn)P為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),求使S△APC:S△ACD=5:4的點(diǎn)P的坐標(biāo).

【答案】分析:(1)先根據(jù)直線(xiàn)y=x-3求出A、B兩點(diǎn)的坐標(biāo),然后將它們代入拋物線(xiàn)中即可求出待定系數(shù)的值.
(2)根據(jù)(1)中拋物線(xiàn)的解析式可求出C,D兩點(diǎn)的坐標(biāo),由于△APC和△ACD同底,因此面積比等于高的比,即P點(diǎn)縱坐標(biāo)的絕對(duì)值:D點(diǎn)縱坐標(biāo)的絕對(duì)值=5:4.據(jù)此可求出P點(diǎn)的縱坐標(biāo),然后將其代入拋物線(xiàn)的解析式中,即可求出P點(diǎn)的坐標(biāo).
解答:解:(1)直線(xiàn)y=x-3與坐標(biāo)軸的交點(diǎn)A(3,0),B(0,-3).

解得,
∴此拋物線(xiàn)的解析式y(tǒng)=x2-2x+3.

(2)拋物線(xiàn)的頂點(diǎn)D(1,-4),與x軸的另一個(gè)交點(diǎn)C(-1,0).
設(shè)P(a,a2-2a+3),則(×4×|a2-2a+3|):(×4×4)=5:4.
化簡(jiǎn)得|a2-2a+3|=5.
當(dāng)a2-2a+3=5,得a=4或a=-2.
∴P(4,5)或P(-2,5),
當(dāng)a2-2a-3<0時(shí),即a2-2a+2=0,此方程無(wú)解.
綜上所述,滿(mǎn)足條件的點(diǎn)的坐標(biāo)為(4,5)或(-2,5).
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)的求法、圖形面積的求法等知識(shí)點(diǎn).考查了學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線(xiàn)y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請(qǐng)求一個(gè)滿(mǎn)足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,拋物線(xiàn)y=-x2+2x+m(m<0)與x軸相交于點(diǎn)A(x1,0)、B(x2,0),點(diǎn)A在點(diǎn)B的左側(cè).當(dāng)x=x2-2時(shí),y
0(填“>”“=”或“<”號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,拋物線(xiàn)y=x2+(k2+1)x+k+1的對(duì)稱(chēng)軸是直線(xiàn)x=-1,且頂點(diǎn)在x軸上方.設(shè)M是直線(xiàn)x=-1左側(cè)拋物線(xiàn)上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線(xiàn)MG,垂足為G,過(guò)點(diǎn)M作直線(xiàn)x=-1的垂線(xiàn)MN,垂足為N,直線(xiàn)x=-1與x軸的交于H點(diǎn),若M點(diǎn)的橫坐標(biāo)為x,矩形MNHG的周長(zhǎng)為l.
(1)求出k的值;
(2)寫(xiě)出l關(guān)于x的函數(shù)解析式;
(3)是否存在點(diǎn)M,使矩形MNHG的周長(zhǎng)最。咳舸嬖,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•揚(yáng)州)如圖,拋物線(xiàn)y=x2-2x-8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線(xiàn)AB對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動(dòng),直尺兩長(zhǎng)邊所在直線(xiàn)被直線(xiàn)AB和拋物線(xiàn)截得兩線(xiàn)段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線(xiàn)段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線(xiàn)y=x2-2x-3與x軸分別交于A(yíng),B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求拋物線(xiàn)頂點(diǎn)M關(guān)于x軸對(duì)稱(chēng)的點(diǎn)M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案