【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4x軸、y軸分別交于點(diǎn)A,點(diǎn)B、點(diǎn)Dy軸的負(fù)半軸上,若將△OAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處。

1)求AB的長(zhǎng)。

2)求點(diǎn)C和點(diǎn)D的坐標(biāo)。

3y軸上是否存在一點(diǎn)P,SPAB= SOCD?

【答案】1AB=5;(2C8,0),D0,-6);(3P10,12,P20,-4,見解析.

【解析】

1)先求得點(diǎn)A和點(diǎn)B的坐標(biāo),則可得到OA、OB的長(zhǎng),然后依據(jù)勾股定理可求得AB的長(zhǎng),
2)依據(jù)翻折的性質(zhì)可得到AC的長(zhǎng),于是可求得OC的長(zhǎng),從而可得到點(diǎn)C的坐標(biāo);設(shè)OD=x,則CD=DB=x+4.,RtOCD中,依據(jù)勾股定理可求得x的值,從而可得到點(diǎn)D0,-6).
3)先求得SPAB的值,然后依據(jù)三角形的面積公式可求得BP的長(zhǎng),從而可得到點(diǎn)P的坐標(biāo).

(1)x=0得:y=4,
B(0,4).
OB=4
y=0得:0=x+4,解得:x=3,
A(3,0).
OA=3.
RtOAB,AB==5.
(2) AB=5

OC=OA+AC=3+5=8,
C(8,0).
設(shè)OD=x,則CD=DB=x+4.
RtOCD,DC2=OD2+OC2,(x+4)2=x2+82,解得:x=6,
D(0,6).
(3)SPAB=SOCD,
SPAB=××6×8=12.
∵點(diǎn)P在y軸上,SPAB=12,
BPOA=12,×3BP=12,解得:BP=8,
P10,12,P20,-4,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:用配方法求最值.

已知x,y為非負(fù)實(shí)數(shù),

x+y

x+y≥2,當(dāng)且僅當(dāng)“x=y”時(shí),等號(hào)成立.

示例:當(dāng)x0時(shí),求y= x++4的最小值.

解:+4=6,當(dāng)x=,即x=1時(shí),y的最小值為6

1)嘗試:當(dāng)x0時(shí),求y= 的最小值.

2)問題解決:隨著人們生活水平的快速提高,小轎車已成為越來(lái)越多家庭的交通工具,假設(shè)某種小轎車的購(gòu)車費(fèi)用為10萬(wàn)元,每年應(yīng)繳保險(xiǎn)費(fèi)等各類費(fèi)用共計(jì)0.4萬(wàn)元,n年的保養(yǎng)、維護(hù)費(fèi)用總和為萬(wàn)元.問這種小轎車使用多少年報(bào)廢最合算(即:使用多少年的年平均費(fèi)用最少,年平均費(fèi)用= )?最少年平均費(fèi)用為多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點(diǎn),BEAGE,DFAGF,連接DE.

(1)求證:△ABE≌△DAF;

(2)若AF=1,四邊形ABED的面積為6,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某工程隊(duì)在工地上利用互相垂直的兩墻AE、AF,另兩邊用鐵柵欄圍成一個(gè)長(zhǎng)方形場(chǎng)地ABCD,中間再用柵欄分割成兩個(gè)長(zhǎng)方形.鐵柵欄總長(zhǎng)180米,已知墻AE長(zhǎng)90米,墻AF長(zhǎng)60米.

1)設(shè)BC長(zhǎng)為x米,長(zhǎng)方形ABCD的面積為y,請(qǐng)寫出yx的函數(shù)關(guān)系,并寫出x的取值范圍;

2)當(dāng)BC的值為多少時(shí),長(zhǎng)方形ABCD的面積最大?

3)若長(zhǎng)方形ABCD的面積不能小于4000,請(qǐng)直接寫出BC邊長(zhǎng)x(米)的取值范圍 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,AB=BCB=∠C=90°,PBC邊上一點(diǎn),APPD,EAB邊上一點(diǎn),BPE=∠BAP

1 如圖1,若AE=PE,直接寫出=______

2 如圖2,求證:AP=PDPE;

3 如圖3,當(dāng)AE=BP時(shí),連BD,則=______,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程 x2﹣(2k+1x+4k)=0.若等腰三角形ABC的一邊長(zhǎng)a4,另兩邊邊長(zhǎng)bc恰好是這個(gè)方程的兩個(gè)實(shí)數(shù)根,則ABC的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是菱形ABCD的邊AD延長(zhǎng)線上的點(diǎn),AE =AC,CE=CB,則∠B的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,B=30°,AD是ABC的角平分線,DEBA交AC于點(diǎn)E,DFCA交AB于點(diǎn)F,已知CD=3.

(1)求AD的長(zhǎng);

(2)求四邊形AEDF的周長(zhǎng).(注意:本題中的計(jì)算過程和結(jié)果均保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+2m1x+m20有實(shí)數(shù)根.

1)求m的取值范圍;

2)若兩根為x1x2x12+x227,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案