【題目】一張寬為6cm的平行四邊形紙帶ABCD如圖1所示,AB=10cm,小明用這張紙帶將底面周長(zhǎng)為10cm直三棱柱紙盒的側(cè)面進(jìn)行包貼(要求包貼時(shí)沒(méi)有重疊部分).小明通過(guò)操作后發(fā)現(xiàn)此類包貼問(wèn)題可將直三棱柱的側(cè)面展開進(jìn)行分析.
(1)若紙帶在側(cè)面纏繞三圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則紙帶AD的長(zhǎng)度為 cm;
(2)若AD=100cm,紙帶在側(cè)面纏繞多圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則這個(gè)直三棱柱紙盒的高度是 cm.
【答案】
(1)25
(2)60
【解析】解:(1)易得AF=DF,F(xiàn)B=DH,過(guò)點(diǎn)B作BI⊥AD,垂足為I,
設(shè)AF=x,則HF=FB= = x,
在直角△BEH中,由勾股定理得到:( x)2+102=x2,
解得x= ,
則AD=2x=25.
故答案是:25;(2)直三棱柱的側(cè)面積等于平行四邊形ABCD的面積,則直三棱柱的高h(yuǎn)= =60(cm),
故答案是:60.
(1)由題意可知直三棱柱的側(cè)面積等于平行四邊形ABCD的面積,則易得AF=DF,F(xiàn)B=DH,可設(shè)AF=x,運(yùn)用等積法求出BF,從而由勾股定理構(gòu)造方程求得x的值即可;
(2)直三棱柱的側(cè)面積等于平行四邊形ABCD的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)中,直線l:y=﹣2x+6分別交兩坐標(biāo)于A、B兩點(diǎn),M是級(jí)段AB上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為x,△OMB的面積為S.
(1)寫出S與x的函數(shù)關(guān)系式;
(2)當(dāng)△OMB的面積是△OAB面積的時(shí),求點(diǎn)M的坐標(biāo);
(3)當(dāng)△OMB是以OB為底的等腰三角形,求它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,OP為一墻面,它與地面OQ垂直,有一根木棒AB如圖放置,點(diǎn)C是它的中點(diǎn),現(xiàn)在將木棒的A點(diǎn)在OP上由A點(diǎn)向下滑動(dòng),點(diǎn)B由O點(diǎn)向OQ方向滑動(dòng),直到AB橫放在地面為止.
(1)在AB滑動(dòng)過(guò)程中,點(diǎn)C經(jīng)過(guò)的路徑可以用下列哪個(gè)圖象來(lái)描述( )
(2)若木棒長(zhǎng)度為2m,如圖②射線OM與地面夾角∠MOQ=60°,當(dāng)AB滑動(dòng)過(guò)程中,與OM并于點(diǎn)D,分別求出當(dāng)AD= 、AD=1、AD= 時(shí),OD的值.
(3)如圖③,是一個(gè)城市下水道,下水道入口寬40cm,下水道水平段高度為40cm,現(xiàn)在要想把整根木棒AB通入下水道水平段進(jìn)行工作,那么這根木棒最長(zhǎng)可以是(cm)(直接寫出結(jié)果,結(jié)果四舍五入取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是BD延長(zhǎng)線上的點(diǎn),且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形;
(2)若∠AED=2∠EAD,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:=(a≠0),即a的負(fù)P次冪等于a的p次冪的倒數(shù).例:=
(1)計(jì)算:=__;=__;
(2)如果=,那么p=__;如果=,那么a=__;
(3)如果=,且a、p為整數(shù),求滿足條件的a、p的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張?jiān)诩讟茿處向外看,由于受到前面乙樓的遮擋,最近只能看到地面D處,俯角為α.小穎在甲樓B處(B在A的正下方)向外看,最近能看到地面E處,俯角為β,地面上G,F(xiàn),D,E在同一直線上,已知乙樓高CF為10m,甲乙兩樓相距FG為15m,俯角α=45°,β=35°.
(1)求點(diǎn)A到地面的距離AG;
(2)求A,B之間的距離.(結(jié)果精確到0.1m)
(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016新疆)如圖,ABCD中,AB=2,AD=1,∠ADC=60°,將ABCD沿過(guò)點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D′處,折痕交CD邊于點(diǎn)E.
(1)求證:四邊形BCED′是菱形;
(2)若點(diǎn)P時(shí)直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)計(jì)算PD′+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)Pm1,2m+1在第二象限,則m的取值范圍是________;
若點(diǎn)Pa,a2在第四象限,則a的取值范圍是________;
若點(diǎn)Pa,|a|3在x軸正半軸上,則a的值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE , 求P點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com